cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052089 Primes formed by concatenating k with k-1.

Original entry on oeis.org

43, 109, 2221, 2423, 3433, 4241, 5857, 7069, 7877, 8887, 10099, 102101, 108107, 112111, 114113, 124123, 148147, 154153, 160159, 172171, 180179, 192191, 198197, 202201, 208207, 210209, 214213, 238237, 244243, 262261, 264263, 268267, 270269, 282281, 294293, 300299
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Examples

			2423 is a prime and a concatenation of 24 and 23.
		

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(n-1) cat Intseq(n)): n in [2..300 by 2] | IsPrime(Seqint(Intseq(n-1) cat Intseq(n)))]; // Marius A. Burtea, Mar 21 2019
    
  • Mathematica
    Sort[Select[FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[ Range[ 300,1,-1],2,1],PrimeQ]] (* Harvey P. Dale, May 09 2012 *)
    Select[Table[n 10^IntegerLength[n-1]+n-1,{n,2,300}],PrimeQ] (* Harvey P. Dale, Aug 20 2025 *)
  • PARI
    for(n=4,1e4,if(isprime(t=eval(Str(n,n-1))),print1(t", "))) \\ Charles R Greathouse IV, May 07 2013
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from filter(isprime, (int(str(k)+str(k-1)) for k in count(2, 2)))
    print(list(islice(agen(), 36))) # Michael S. Branicky, Aug 05 2022