A068699 Duplicate of A052089.
43, 109, 2221, 2423, 3433, 4241, 5857, 7069, 7877, 8887, 10099, 102101, 108107
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[m: n in [2..270 by 2] | IsPrime(m) where m is Seqint(Intseq(n+1) cat Intseq(n))]; // Bruno Berselli, Jun 18 2011
Select[Table[FromDigits[Join[Flatten[IntegerDigits[{n,n+1}]]]],{n,270}],PrimeQ] (* Jayanta Basu, May 16 2013 *)
forstep(n=2,1e3,2,if(isprime(k=eval(Str(n,n+1))),print1(k", "))) \\ Charles R Greathouse IV, Jun 18 2011
from sympy import isprime from itertools import count, islice def agen(): yield from filter(isprime, (int(str(k)+str(k+1)) for k in count(2, 2))) print(list(islice(agen(), 38))) # Michael S. Branicky, Aug 05 2022
With[{e = 6}, TakeWhile[Select[Function[s, Union@ Flatten@ Map[Function[k, Map[FromDigits@ Flatten@ IntegerDigits@ # &, Partition[Take[s, 10^(e - k)], k, 1]]], Range[2, e]]]@ Range[10^e], PrimeQ], IntegerLength@ # <= e &]] (* Michael De Vlieger, Apr 23 2017 *)
1213 is prime, therefore 12 is a term.
a030457 n = a030457_list !! (n-1) a030457_list = filter ((== 1) . a010051' . a001704) [1..] -- Reinhard Zumkeller, Jun 27 2015, Apr 26 2011
[n: n in [1..500] | IsPrime(Seqint(Intseq(n+1) cat Intseq(n)))]; // Vincenzo Librandi, Jul 23 2016
concat:=proc(a,b) local bb: bb:=nops(convert(b,base,10)): 10^bb*a+b end proc: a:=proc(n) if isprime(concat(n,n+1))=true then n else end if end proc: seq(a(n),n=0..500); # Emeric Deutsch, Nov 23 2007
Select[ Range[500], PrimeQ[ ToExpression[ StringJoin[ ToString[#], ToString[#+1]]]]&] (* Jean-François Alcover, Nov 18 2011 *) Select[Range[500],PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[ #+1]]]]&] (* Harvey P. Dale, Dec 23 2015 *) Position[#[[1]]*10^IntegerLength[#[[2]]]+#[[2]]&/@Partition[Range[ 500], 2,1],?PrimeQ]//Flatten (* _Harvey P. Dale, Jul 14 2019 *)
for(n=1,10^5,if(isprime(eval(concat(Str(n),n+1))),print1(n,", "))); /* Joerg Arndt, Apr 27 2011 */
from sympy import isprime def ok(n): return isprime(int(str(n)+str(n+1))) print([k for k in range(500) if ok(k)]) # Michael S. Branicky, Apr 19 2023
[nn1: n in [1..130] | IsPrime(nn1) where nn1 is Seqint([1] cat Intseq(n) cat Intseq(n))]; // Bruno Berselli, Jan 30 2013
Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {1}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 27 2013 *) With[{nn=200},Select[FromDigits[Flatten[IntegerDigits[#]]]&/@Thread[ {Range[ nn],Range[nn],1}],PrimeQ]] (* Harvey P. Dale, Aug 17 2013 *)
import numpy as np def factors(n): return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0)) for i in range(1,2000): p1=int(str(i)+str(i)+"1") if len(factors(p1))<3: print(p1)
from sympy import isprime from itertools import count, islice def agen(): yield from filter(isprime, (int(str(k)+str(k)+'1') for k in count(1))) print(list(islice(agen(), 36))) # Michael S. Branicky, Jul 26 2022
a054211 n = a054211_list !! (n-1) a054211_list = filter ((== 1) . a010051' . a127423) [1..] -- Reinhard Zumkeller, Jun 27 2015 Jul 15 2012
ncpQ[{a_,b_}]:=PrimeQ[FromDigits[Flatten[IntegerDigits[{b,a}]]]]; Transpose[ Select[Partition[Range[500],2,1],ncpQ]][[2]] (* Harvey P. Dale, Nov 25 2012 *) Select[Range[500],PrimeQ[#*10^IntegerLength[#-1]+#-1]&] (* Harvey P. Dale, Mar 16 2019 *)
isok(n) = isprime(eval(Str(n, n-1))); \\ Michel Marcus, Oct 14 2016
a(4) = 7 because 4567 is a prime.
A084559(n,N=n,T=10^logint(n,10))=while(T*=10,for(m=n+1,n=T-1,ispseudoprime(N=N*T+m)&&return(m))) \\ M. F. Hasler, Feb 22 2021
42 is a member as 4241 as well as 4243 are primes.
import Data.List.Ordered (isect) a068700 n = a068700_list !! (n-1) a068700_list = isect a030457_list a054211_list -- Reinhard Zumkeller, Jun 27 2015
filter:= proc(n) local d; d:= ilog10(n)+1; isprime(n*10^d+n-1) and isprime(n*10^d+n+1) end proc: select(filter, [$1..10^5]); # Robert Israel, Oct 24 2014
d[n_]:=IntegerDigits[n]; conQ[n_]:=And@@PrimeQ[FromDigits/@{Join[d[n],d[n+1]],Join[d[n],d[n-1]]}]; Select[Range[5850],conQ[#] &] (* Jayanta Basu, May 21 2013 *)
for(n=2,200, if(isprime(n*10^ceil(log(n-1)/log(10))+n-1)*isprime(n*10^ceil(log(n+1)/log(10))+n+1)==1,print1(n,",")))
a(4) = 3 since 43 is prime, a(25) = 13 since 25242322212019181716151413 is prime.
from sympy import isprime def A341701(n): k, m = n, n-1 while not isprime(k) and m > 0: k = int(str(k)+str(m)) m -= 1 return m+1 if isprime(k) else -1
Comments