cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052156 Number of compositions of n into 2*j-1 kinds of j's for all j>=1.

Original entry on oeis.org

1, 1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0

Views

Author

Barry E. Williams, Jan 24 2000

Keywords

Comments

First differences of A025192, also second differences of A000244.

Examples

			1 + x + 4*x^2 + 12*x^3 + 36*x^4 + 108*x^5 + 324*x^6 + 972*x^7 + 2916*x^8 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
  • P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)^2/(1 - 3 x), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
  • PARI
    {a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-4*k + 9) * A[k-1] + 3 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */

Formula

a(n) = 4*3^(n-2); n >= 2; a(0) = 1; a(1) = 1.
G.f.: (1-x)^2/(1-3*x).
G.f.: 1/(1-sum(j>=1, (2*j-1)*x^j )). - Joerg Arndt, Jul 06 2011
a(n) = 3*a(n-1)+(-1)^n*C(2, 2-n).
a(n) = A003946(n-1), n>0. - R. J. Mathar, Oct 13 2008
a(n) = (-4*n + 9) * a(n-1) + 3 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
a(n) = Sum_{k, 0<=k<=n} A201780(n,k). - Philippe Deléham, Dec 05 2011

Extensions

New name from Joerg Arndt, Jul 06 2011