A052180 Last filtering prime for n-th prime p: find smallest prime factor of each of the composite numbers between p and next prime; take maximal value.
2, 2, 3, 2, 3, 2, 3, 5, 2, 5, 3, 2, 3, 7, 5, 2, 5, 3, 2, 7, 3, 5, 7, 3, 2, 3, 2, 3, 11, 3, 7, 2, 11, 2, 5, 7, 3, 13, 5, 2, 11, 2, 3, 2, 11, 13, 3, 2, 3, 5, 2, 13, 11, 7, 5, 2, 5, 3, 2, 17, 13, 3, 2, 3, 17, 5, 11, 2, 3, 5, 19, 7, 13, 3, 5, 17, 3, 13, 7, 2, 7, 2, 19, 3, 5, 11, 3, 2, 3, 11, 13, 3, 17
Offset: 2
Examples
For n=9, n-th prime is 23, composites between 23 and next prime are 24 25 26 27 28, smallest prime divisors are 2 5 2 3 2; maximal value is 5, so a(9)=5.
Links
- T. D. Noe, Table of n, a(n) for n=2..10000
Programs
-
Haskell
a052180 n = a052180_list !! (n-2) a052180_list = f [4..] where f ws = (maximum $ map a020639 us) : f vs where (us, _:vs) = span ((== 0) . a010051) ws -- Reinhard Zumkeller, Dec 27 2012
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; mi[x_] := Min[ba[x]]; Table[Max[Table[mi[ba[w]], {w, Prime[j]+1, -1+Prime[j+1]}]], {j, 2, 256}] (* Second program: *) mpf[{a_,b_}] := Max[FactorInteger[#][[1,1]]& /@ Range[a+1,b-1]]; mpf/@ Partition[ Prime[Range[2,100]],2,1] (* Harvey P. Dale, Apr 30 2013 *)
-
PARI
a(n) = {my(p = prime(n), amax = 0); forcomposite(c = p, nextprime(p+1), amax = max(factor(c)[1,1], amax);); amax;} \\ Michel Marcus, Apr 21 2018
-
Python
from sympy import prime, nextprime, primefactors def a(n): p = prime(n); q = nextprime(p) return max(min(primefactors(m)) for m in range(p+1, q)) print([a(n) for n in range(2, 95)]) # Michael S. Branicky, Feb 02 2021
Comments