cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052254 Partial sums of A050406.

Original entry on oeis.org

1, 17, 108, 444, 1410, 3762, 8844, 18876, 37323, 69355, 122408, 206856, 336804, 531012, 813960, 1217064, 1780053, 2552517, 3595636, 4984100, 6808230, 9176310, 12217140, 16082820, 20951775
Offset: 0

Views

Author

Barry E. Williams, Feb 03 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.

Crossrefs

Cf. A050406.
Cf. A093645 ((10, 1) Pascal, column m=7).

Programs

  • GAP
    List([0..30], n-> (10*n+7)*Binomial(n+6, 6)/7 ); # G. C. Greubel, Jan 19 2020
  • Magma
    [(10*n+7)*Binomial(n+6, 6)/7: n in [0..30]]; // G. C. Greubel, Jan 19 2020
    
  • Maple
    seq( (10*n+7)*binomial(n+6, 6)/7, n=0..30); # G. C. Greubel, Jan 19 2020
  • Mathematica
    Table[10*Binomial[n+7,7] -9*Binomial[n+6,6], {n,0,30}] (* G. C. Greubel, Jan 19 2020 *)
    Rest[Nest[Accumulate[#]&,Table[n(n+1)(10n-7)/6,{n,0,50}],4]] (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    vector(31, n, (10*n-3)*binomial(n+5, 6)/7) \\ G. C. Greubel, Jan 19 2020
    
  • Sage
    [(10*n+7)*binomial(n+6, 6)/7 for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

a(n) = (10*n + 7)*binomial(n+6, 6)/7.
G.f.: (1+9*x)/(1-x)^8.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = 10*binomial(n+7, 7) - 9*binomial(n+6, 6).
E.g.f.: (7! + 80640*x + 189000*x^2 + 142800*x^3 + 45150*x^4 + 6552*x^5 + 427*x^6 + 10*x^7)*exp(x)/7!. (End)
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - Wesley Ivan Hurt, Nov 28 2021