A052254 Partial sums of A050406.
1, 17, 108, 444, 1410, 3762, 8844, 18876, 37323, 69355, 122408, 206856, 336804, 531012, 813960, 1217064, 1780053, 2552517, 3595636, 4984100, 6808230, 9176310, 12217140, 16082820, 20951775
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1)
Programs
-
GAP
List([0..30], n-> (10*n+7)*Binomial(n+6, 6)/7 ); # G. C. Greubel, Jan 19 2020
-
Magma
[(10*n+7)*Binomial(n+6, 6)/7: n in [0..30]]; // G. C. Greubel, Jan 19 2020
-
Maple
seq( (10*n+7)*binomial(n+6, 6)/7, n=0..30); # G. C. Greubel, Jan 19 2020
-
Mathematica
Table[10*Binomial[n+7,7] -9*Binomial[n+6,6], {n,0,30}] (* G. C. Greubel, Jan 19 2020 *) Rest[Nest[Accumulate[#]&,Table[n(n+1)(10n-7)/6,{n,0,50}],4]] (* Harvey P. Dale, Aug 03 2020 *)
-
PARI
vector(31, n, (10*n-3)*binomial(n+5, 6)/7) \\ G. C. Greubel, Jan 19 2020
-
Sage
[(10*n+7)*binomial(n+6, 6)/7 for n in (0..30)] # G. C. Greubel, Jan 19 2020
Formula
a(n) = (10*n + 7)*binomial(n+6, 6)/7.
G.f.: (1+9*x)/(1-x)^8.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = 10*binomial(n+7, 7) - 9*binomial(n+6, 6).
E.g.f.: (7! + 80640*x + 189000*x^2 + 142800*x^3 + 45150*x^4 + 6552*x^5 + 427*x^6 + 10*x^7)*exp(x)/7!. (End)
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - Wesley Ivan Hurt, Nov 28 2021