cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052286 Primes p such that f(p) > f(q) for all primes q < p, where f(n) is the sum of factorials of the digits of n if that sum is the square of a prime, otherwise f(n)=0.

Original entry on oeis.org

17, 5077, 178799, 506977979, 4045586999, 156777789899, 157778789899, 1445779999999, 1555899989999, 1556788999999999, 144559999999999699, 156787999999999999, 1444446778999999999999, 1556688999999998999999, 15556699999799999999999, 144444556769999999999999999, 144557778999999999989999999, 177777889899989999999999999, 177778899989999999999999989
Offset: 1

Views

Author

G. L. Honaker, Jr., Feb 07 2000

Keywords

Examples

			a(2)=5077 because 5! + 0! + 7! + 7! = 101^2 (a squared prime that is larger than any of the previous ones).
		

Crossrefs

Extensions

a(4) found by Jud McCranie
a(5)-a(10) from Donovan Johnson, Dec 04 2009
Terms a(11) onward from Max Alekseyev, Feb 14 2024

A290944 Primes p such that sum of digits of p^3 is a perfect square.

Original entry on oeis.org

3, 1753, 1999, 2389, 2713, 3301, 3361, 3529, 3583, 3607, 3631, 3643, 3697, 3889, 3907, 4093, 4099, 4129, 4153, 4159, 4243, 4423, 4591, 4639, 4813, 5167, 5449, 5503, 5527, 5563, 5683, 5689, 5827, 6199, 6211, 6427, 6529, 6553, 6691, 6709, 6883, 6949, 6961, 6997
Offset: 1

Views

Author

K. D. Bajpai, Aug 14 2017

Keywords

Comments

All the terms in this sequence, except a(1), are congruent to 1 mod 3.
After a(1), all the terms are congruent to {1, 4, 7} mod 9.

Examples

			a(1) = 3 is prime: 3^3 = 27; 2 + 7 = 9 = 3^2.
a(2) = 1753 is prime: 1753^3 = 5386984777; 5 + 3 + 8 + 6 + 9 + 8 + 4 + 7 + 7 + 7 = 64 = 8^2.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsSquare(&+Intseq(p^3))];
    
  • Maple
    f:= n->add(d, d=convert(n^3, base, 10)):
    select(t -> type(sqrt(f(t)), integer), [seq(ithprime(m), m=1..10^3)]);
  • Mathematica
    Select[Prime[Range[2000]], IntegerQ[Sqrt[Plus @@ IntegerDigits[#^3]]] &]
  • PARI
    forprime(p=1, 5000, if(issquare(sumdigits(p^3)), print1(p, ", ")));
    
  • PARI
    is(n) = ispseudoprime(n) && issquare(sumdigits(n^3)) \\ Felix Fröhlich, Aug 14 2017
Showing 1-2 of 2 results.