cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A333733 Array read by antidiagonals: T(n,k) is the number of non-isomorphic n X n nonnegative integer matrices with all row and column sums equal to k up to permutations of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 5, 5, 1, 1, 1, 1, 3, 9, 12, 7, 1, 1, 1, 1, 4, 13, 43, 31, 11, 1, 1, 1, 1, 4, 22, 106, 264, 103, 15, 1, 1, 1, 1, 5, 30, 321, 1856, 2804, 383, 22, 1, 1, 1, 1, 5, 45, 787, 12703, 65481, 44524, 1731, 30, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Apr 04 2020

Keywords

Comments

Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A257493. Burnside's lemma can be used to extend this method to the unlabeled case.

Examples

			Array begins:
=======================================================
n\k | 0 1  2   3     4       5         6          7
----+--------------------------------------------------
  0 | 1 1  1   1     1       1         1          1 ...
  1 | 1 1  1   1     1       1         1          1 ...
  2 | 1 1  2   2     3       3         4          4 ...
  3 | 1 1  3   5     9      13        22         30 ...
  4 | 1 1  5  12    43     106       321        787 ...
  5 | 1 1  7  31   264    1856     12703      71457 ...
  6 | 1 1 11 103  2804   65481   1217727   16925049 ...
  7 | 1 1 15 383 44524 3925518 224549073 8597641912 ...
  ...
		

Crossrefs

Columns k=0..5 are A000012, A000012, A000041, A232215, A232216, A333736.
Main diagonal is A333734.

A058390 Number of 4 X 4 matrices with nonnegative integer entries and all row sums equal to n, up to row and column permutation.

Original entry on oeis.org

1, 5, 53, 458, 3411, 19865, 95214, 383714, 1346183, 4202086, 11905966, 31061806, 75533056, 172800689, 374861365, 775978710, 1541027694, 2949003213, 5458806804, 9805626744, 17140511056
Offset: 0

Views

Author

Vladeta Jovovic, Nov 24 2000

Keywords

Crossrefs

Programs

A052282 Number of 3 X 3 stochastic matrices under row and column permutations.

Original entry on oeis.org

1, 1, 3, 5, 9, 13, 22, 30, 45, 61, 85, 111, 149, 189, 244, 304, 381, 465, 571, 685, 825, 977, 1158, 1354, 1585, 1833, 2121, 2431, 2785, 3165, 3596, 4056, 4573, 5125, 5739, 6393, 7117, 7885, 8730, 9626, 10605, 11641, 12769, 13959, 15249, 16609, 18076, 19620
Offset: 0

Views

Author

Vladeta Jovovic, Feb 06 2000

Keywords

Comments

Unreduced numerators in convergent to log(2) = lim[n->inf, a(n)/A000670(n+1)].

Examples

			There are 5 nonisomorphic 3 X 3 matrices with row and column sums 3:
[0 0 3] [0 0 3] [0 1 2] [0 1 2] [1 1 1]
[0 3 0] [1 2 0] [1 1 1] [1 2 0] [1 1 1]
[3 0 0] [2 1 0] [2 1 0] [2 0 1] [1 1 1]
		

Crossrefs

Row n=3 of A333733.
Cf. A002817, A052280, A052281. Different from A001993.

Programs

  • Maple
    a:= n -> (Matrix([[1, 0, 0, 1, 1, 3, 5, 9, 13]]). Matrix(9, (i,j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -3, -1, 1, 3, -1, -2, 1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..50);  # Alois P. Heinz, Jul 31 2008
  • Mathematica
    LinearRecurrence[{2,1,-3,-1,1,3,-1,-2,1},{1,1,3,5,9,13,22,30,45},50] (* Harvey P. Dale, Mar 10 2018 *)

Formula

G.f.: (x^6-x^5+x^3-x+1)/((1-x)^5*(1+x)^2*(1+x+x^2)). - Ralf Stephan and Vladeta Jovovic, May 07 2004

A052281 Number of 4 X 4 symmetric stochastic matrices under row and column permutations.

Original entry on oeis.org

1, 1, 3, 6, 16, 29, 62, 107, 195, 320, 522, 804, 1234, 1804, 2626, 3700, 5155, 7038
Offset: 0

Views

Author

Vladeta Jovovic, Feb 06 2000

Keywords

Comments

This sequence appears to be an erroneous version of A333886.

Examples

			There are 6 nonisomorphic symmetric 4 X 4 matrices with row and column sums 3:
[0 0 0 3] [0 0 1 2] [0 0 1 2] [0 0 1 2] [0 0 1 2] [0 1 1 1]
[0 0 3 0] [0 0 2 1] [0 1 1 1] [0 1 2 0] [0 2 1 0] [1 0 1 1]
[0 3 0 0] [1 2 0 0] [1 1 1 0] [1 2 0 0] [1 1 0 1] [1 1 0 1]
[3 0 0 0] [2 1 0 0] [2 1 0 0] [2 0 0 1] [2 0 1 0] [1 1 1 0]
But, A333886 gives 6 other cases.
		

Crossrefs

Showing 1-4 of 4 results.