A052378 Primes followed by a [4,2,4] prime difference pattern of A001223.
7, 13, 37, 97, 103, 223, 307, 457, 853, 877, 1087, 1297, 1423, 1483, 1867, 1993, 2683, 3457, 4513, 4783, 5227, 5647, 6823, 7873, 8287, 10453, 13687, 13873, 15727, 16057, 16063, 16183, 17383, 19417, 19423, 20743, 21013, 21313, 22273, 23053, 23557
Offset: 1
Keywords
Examples
103 initiates [103,107,109,113] prime quadruple followed by [4,2,4] difference pattern.
Links
- Zak Seidov, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
a = {}; Do[If[Prime[x + 3] - Prime[x] == 10, AppendTo[a, Prime[x]]], {x, 1, 10000}]; a (* Zerinvary Lajos, Apr 03 2007 *) Select[Partition[Prime[Range[3000]],4,1],Differences[#]=={4,2,4}&][[All,1]] (* Harvey P. Dale, Jun 16 2017 *)
-
PARI
is(n)=n%6==1 && isprime(n+4) && isprime(n+6) && isprime(n+10) && isprime(n) \\ Charles R Greathouse IV, Apr 29 2015
Formula
a(n) is the initial prime of a [p, p+4, p+6, p+6+4] prime-quadruple consisting of two 4-twins: [p, p+4] and [p+6, p+10].
Comments