cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A022007 Initial members of prime 5-tuples (p, p+4, p+6, p+10, p+12).

Original entry on oeis.org

7, 97, 1867, 3457, 5647, 15727, 16057, 19417, 43777, 79687, 88807, 101107, 257857, 266677, 276037, 284737, 340927, 354247, 375247, 402757, 419047, 427237, 463447, 470077, 626617, 666427, 736357, 823717, 855727, 959467, 978067, 1022377, 1043587, 1068247
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A052378. - R. J. Mathar, Feb 11 2013
All terms are congruent to 7 (modulo 30). - Matt C. Anderson, May 22 2015
This sequence is related to the admissible prime 5-tuple (0, 4, 6, 10, 12) because the sequence [1, 2, 3, 1, 2, repeat(1)] gives for n >= 1 the smallest element of RS0(A000040(n)) (the smallest nonnegative complete residue systems modulo prime(n)) which defines a residue class containing none of the 5-tuple members. This 5-tuple is one of two prime constellations of diameter 12. The other one is (0, 2, 6, 8, 12) with initial members given in A022006. See the Wikipedia and Weisstein pages. - Wolfdieter Lang, Oct 06 2017

Examples

			Admissibility guaranteeing sequence [1, 2, 3, 1, 2, repeat(1)] examples: the only residue class modulo prime(3) = 5 which contains none of the 5-tuple (0, 4, 6, 10, 12) members is 3 (mod 5). For prime(5) = 11 the first class is 2 (mod 11); the others are 3, 5, 7, 8, 9 (mod 11). - _Wolfdieter Lang_, Oct 06 2017
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | IsPrime(p+4) and IsPrime(p+6) and IsPrime(p+10)and IsPrime(p+12)]; // Vincenzo Librandi, Aug 23 2015
    
  • Mathematica
    Transpose[Select[Partition[Prime[Range[76000]], 5, 1], Differences[#] == {4, 2, 4, 2} &]][[1]] (* Harvey P. Dale, Aug 16 2014 *)
  • PARI
    forprime(p=2,1e5,if(isprime(p+4)&&isprime(p+6)&&isprime(p+10)&&isprime(p+12),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e7, 4,6,10,12); # Dana Jacobsen, Sep 30 2015

Formula

a(n) = 7 + 30*A089157(n). - Zak Seidov, Nov 01 2011

A078847 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <= 6 (i.e., when d = 2, 4 or 6) and forming pattern = [2, 4, 6]; short notation = [246] d-pattern.

Original entry on oeis.org

17, 41, 227, 347, 641, 1091, 1277, 1427, 1487, 1607, 2687, 3527, 3917, 4001, 4127, 4637, 4787, 4931, 8231, 9461, 10331, 11777, 12107, 13901, 14627, 20747, 21557, 23741, 25577, 26681, 26711, 27737, 27941, 28277, 29021, 31247, 32057, 32297
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A022004. - R. J. Mathar, Feb 10 2013
a(n) + 12 is the greatest term in the sequence of 4 consecutive primes with 3 consecutive gaps 2, 4, 6. - Muniru A Asiru, Aug 03 2017

Examples

			17, 17+2 = 19, 17+2+4 = 23, 17+2+4+6 = 29 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].
Cf. A190814[2,4,6,8], A190817[2,4,6,8,10], A190819[2,4,6,8,10,12], A190838[2,4,6,8,10,12,14]

Programs

  • Mathematica
    d = Differences[Prime[Range[10000]]]; Prime[Flatten[Position[Partition[d, 3, 1], {2, 4, 6}]]] (* T. D. Noe, May 23 2011 *)
    Transpose[Select[Partition[Prime[Range[10000]],4,1],Differences[#] == {2,4,6}&]][[1]] (* Harvey P. Dale, Aug 07 2013 *)

Formula

Primes p=prime(i) such that prime(i+1) = p+2, prime(i+2) = p+2+4, prime(i+3) = p+2+4+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009
Additional cross references from Harvey P. Dale, May 10 2014

A078857 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[6, 6,2]; short d-string notation of pattern = [662].

Original entry on oeis.org

47, 167, 257, 557, 587, 647, 1217, 2957, 4007, 6257, 6857, 7577, 10847, 11927, 14537, 16217, 17477, 19457, 24407, 25457, 26687, 26717, 29867, 41507, 41597, 48527, 51407, 54617, 56087, 60077, 61547, 68477, 75527, 82457, 84047, 94427, 101267
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A047948. - R. J. Mathar, Feb 11 2013

Examples

			p=47,47+6=53,47+6+6=59,47+6+6+2=61 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Select[Partition[Prime[Range[10000]],4,1],Differences[#]=={6,6,2}&][[All,1]] (* Harvey P. Dale, Apr 29 2017 *)

Formula

Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+6, p(i+3)=p+6+6+2.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078858 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d = 2, 4 or 6) and forming d-pattern = [6, 6, 4]; short d-string notation of pattern = [664].

Original entry on oeis.org

151, 367, 601, 727, 2281, 2671, 3307, 4987, 5557, 10651, 12967, 13171, 15907, 18217, 18427, 20101, 20341, 24091, 27061, 28591, 30097, 30307, 31321, 32491, 35311, 37951, 41941, 42181, 42391, 45751, 52951, 53617, 55201, 56767, 59107, 65407
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A047948. - R. J. Mathar, Feb 11 2013

Examples

			p=151, 151+6 = 157, 151+6+6 = 163, 151+6+6+4 = 167 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[6600]],4,1],Differences[#] == {6,6,4}&]][[1]] (* Harvey P. Dale, Nov 04 2011 *)

Formula

Primes p = p(i) such that p(i+1) = p+6, p(i+2) = p+6+6, p(i+3) = p+6+6+4.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078854 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[6, 2,6]; short d-string notation of pattern = [626].

Original entry on oeis.org

23, 53, 263, 563, 593, 1223, 1283, 1613, 2333, 2543, 3533, 4013, 4643, 5843, 6263, 6353, 6563, 10853, 11483, 14543, 15263, 17483, 19073, 19373, 19463, 23663, 26723, 29123, 32363, 34253, 41603, 48473, 49193, 49523, 51413, 51473, 71333, 75983
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A049438. - R. J. Mathar, May 06 2017

Examples

			p=23,23+6=29,23+6+2=31,23+6+2+6=37 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[7500]],4,1],Differences[#]=={6,2,6}&]][[1]] (* Harvey P. Dale, Apr 17 2015 *)

Formula

Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+2, p(i+3)=p+6+2+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078855 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[6, 4,2]; short d-string notation of pattern = [642].

Original entry on oeis.org

31, 61, 271, 607, 1291, 1657, 1777, 1861, 1987, 2131, 2371, 2677, 2791, 4507, 5407, 5431, 5641, 7867, 9001, 11821, 13681, 14551, 17377, 18121, 18301, 20347, 21481, 22147, 24097, 27271, 32707, 35521, 36781, 37561, 41221, 41947, 42397, 42451
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A078562. - R. J. Mathar, May 06 2017

Examples

			p=31,31+6=37,31+6+4=41,31+6+4+2=43 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[4500]],4,1],Differences[#] == {6,4,2}&]][[1]] (* Harvey P. Dale, Feb 10 2015 *)

Formula

Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+4, p(i+3)=p+6+4+2.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078848 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[2,6,4]; short d-string notation of pattern = [264].

Original entry on oeis.org

29, 59, 71, 269, 431, 1289, 2129, 2339, 2381, 2789, 4721, 5519, 5639, 5849, 6569, 6959, 8999, 10091, 13679, 14549, 16649, 16691, 18119, 19379, 19751, 21491, 25931, 27689, 27791, 28619, 31181, 32369, 32561, 32831, 36779, 41609, 43961, 45119
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A049437. - R. J. Mathar, Feb 10 2013

Examples

			29, 29+2=31, 29+2+6=37, 29+2+6+4=41 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    d = {2, 6, 4}; First /@ Select[Partition[Prime@ Range[10^4], Length@ d + 1, 1], Differences@ # == d &] (* Michael De Vlieger, May 02 2016 *)
    Select[Partition[Prime[Range[4700]],4,1],Differences[#]=={2,6,4}&][[All,1]] (* Harvey P. Dale, Mar 08 2020 *)

Formula

Primes p=p(i) such that p(i+1)=p+2, p(i+2)=p+2+6, p(i+3)=p+2+6+4.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009
Typo in example corrected by Michel Marcus, Dec 28 2013

A078851 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[4, 6, 2]; short d-string notation of pattern = [462].

Original entry on oeis.org

19, 127, 229, 1009, 1279, 1597, 1609, 2539, 3319, 3529, 3907, 3919, 4639, 4789, 4999, 5839, 5857, 7477, 7537, 8419, 9619, 12097, 12907, 13327, 15259, 15877, 17569, 17977, 19069, 22027, 23017, 24967, 27739, 28537, 32359, 33577, 36919, 38317
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A078561. - R. J. Mathar, May 06 2017

Examples

			p=19,19+4=23,19+4+6=29,19+4+6+2=31 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Select[Prime@ Range[10^4], Differences@ Prime@ Range[#, # + 3] &@ PrimePi@ # == {4, 6, 2} &] (* Michael De Vlieger, Jul 02 2016 *)

Formula

Primes p = p(i) such that p(i+1)=p+4, p(i+2)=p+4+6, p(i+3)=p+4+6+2.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078852 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[4, 6,6]; short d-string notation of pattern = [466].

Original entry on oeis.org

43, 163, 643, 937, 967, 1093, 1213, 2953, 4003, 4447, 6967, 7573, 8737, 9463, 10243, 10597, 11923, 12487, 12637, 13033, 14533, 14737, 15787, 16087, 16417, 16477, 16927, 17317, 17467, 20113, 22063, 25453, 26683, 26713, 27763, 29863, 32983
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A078561. - R. J. Mathar, Feb 11 2013

Examples

			p=43,43+4=47,43+4+6=53,43+4+6+6=59 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[4000]],4,1],Differences[#]=={4,6,6}&]][[1]] (* Harvey P. Dale, Dec 15 2015 *)
  • PARI
    isok(n) = isprime(n) && (nextprime(n+1) == (n+4)) && (nextprime(n+5) == (n+10)) && (nextprime(n+11) == (n+16)) \\ Michel Marcus, Jul 23 2013

Formula

Primes p = p(i) such that p(i+1)=p+4, p(i+2)=p+4+6, p(i+3)=p+4+6+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078856 Initial term in sequence of four consecutive primes whose consecutive differences have d-pattern = [6, 4, 6]; short d-string notation for pattern = [646].

Original entry on oeis.org

73, 157, 373, 433, 1543, 2341, 2383, 3313, 3607, 4441, 4993, 5851, 6037, 6961, 7237, 8731, 9613, 9733, 10723, 13093, 14143, 14731, 16411, 16921, 17971, 18787, 20107, 21391, 23011, 23593, 25111, 25237, 25447, 27793, 30103, 30697, 32353, 32563
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Examples

			p=73, 73 + 6 = 79, 73 + 6 + 4 = 83, 73 + 6 + 4 + 6 = 89 are consecutive primes.
		

Crossrefs

Subsequence of A078562.
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Maple
    N:=10^4: # to get all terms <= N.
    Primes:=select(isprime,[seq(i,i=3..N+16,2)]):
    Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],
    Primes[t+3]-Primes[t+2]]=[6,4,6], [$1..nops(Primes)-3])]; # Muniru A Asiru, Aug 04 2017
  • Mathematica
    Transpose[Select[Partition[Prime[Range[10000]],4,1],Differences[#]=={6,4,6}&]][[1]] (* Harvey P. Dale, Apr 22 2014 *)

Formula

Primes p = p_(i) such that p_(i+1) = p + 6, p_(i+2) = p + 6 + 4, p_(i+3) = p + 6 + 4 + 6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009
Name simplified by Michel Marcus, Aug 11 2017
Showing 1-10 of 24 results. Next