cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A078847 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <= 6 (i.e., when d = 2, 4 or 6) and forming pattern = [2, 4, 6]; short notation = [246] d-pattern.

Original entry on oeis.org

17, 41, 227, 347, 641, 1091, 1277, 1427, 1487, 1607, 2687, 3527, 3917, 4001, 4127, 4637, 4787, 4931, 8231, 9461, 10331, 11777, 12107, 13901, 14627, 20747, 21557, 23741, 25577, 26681, 26711, 27737, 27941, 28277, 29021, 31247, 32057, 32297
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A022004. - R. J. Mathar, Feb 10 2013
a(n) + 12 is the greatest term in the sequence of 4 consecutive primes with 3 consecutive gaps 2, 4, 6. - Muniru A Asiru, Aug 03 2017

Examples

			17, 17+2 = 19, 17+2+4 = 23, 17+2+4+6 = 29 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].
Cf. A190814[2,4,6,8], A190817[2,4,6,8,10], A190819[2,4,6,8,10,12], A190838[2,4,6,8,10,12,14]

Programs

  • Mathematica
    d = Differences[Prime[Range[10000]]]; Prime[Flatten[Position[Partition[d, 3, 1], {2, 4, 6}]]] (* T. D. Noe, May 23 2011 *)
    Transpose[Select[Partition[Prime[Range[10000]],4,1],Differences[#] == {2,4,6}&]][[1]] (* Harvey P. Dale, Aug 07 2013 *)

Formula

Primes p=prime(i) such that prime(i+1) = p+2, prime(i+2) = p+2+4, prime(i+3) = p+2+4+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009
Additional cross references from Harvey P. Dale, May 10 2014

A078857 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[6, 6,2]; short d-string notation of pattern = [662].

Original entry on oeis.org

47, 167, 257, 557, 587, 647, 1217, 2957, 4007, 6257, 6857, 7577, 10847, 11927, 14537, 16217, 17477, 19457, 24407, 25457, 26687, 26717, 29867, 41507, 41597, 48527, 51407, 54617, 56087, 60077, 61547, 68477, 75527, 82457, 84047, 94427, 101267
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A047948. - R. J. Mathar, Feb 11 2013

Examples

			p=47,47+6=53,47+6+6=59,47+6+6+2=61 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Select[Partition[Prime[Range[10000]],4,1],Differences[#]=={6,6,2}&][[All,1]] (* Harvey P. Dale, Apr 29 2017 *)

Formula

Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+6, p(i+3)=p+6+6+2.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078858 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d = 2, 4 or 6) and forming d-pattern = [6, 6, 4]; short d-string notation of pattern = [664].

Original entry on oeis.org

151, 367, 601, 727, 2281, 2671, 3307, 4987, 5557, 10651, 12967, 13171, 15907, 18217, 18427, 20101, 20341, 24091, 27061, 28591, 30097, 30307, 31321, 32491, 35311, 37951, 41941, 42181, 42391, 45751, 52951, 53617, 55201, 56767, 59107, 65407
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A047948. - R. J. Mathar, Feb 11 2013

Examples

			p=151, 151+6 = 157, 151+6+6 = 163, 151+6+6+4 = 167 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[6600]],4,1],Differences[#] == {6,6,4}&]][[1]] (* Harvey P. Dale, Nov 04 2011 *)

Formula

Primes p = p(i) such that p(i+1) = p+6, p(i+2) = p+6+6, p(i+3) = p+6+6+4.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078854 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[6, 2,6]; short d-string notation of pattern = [626].

Original entry on oeis.org

23, 53, 263, 563, 593, 1223, 1283, 1613, 2333, 2543, 3533, 4013, 4643, 5843, 6263, 6353, 6563, 10853, 11483, 14543, 15263, 17483, 19073, 19373, 19463, 23663, 26723, 29123, 32363, 34253, 41603, 48473, 49193, 49523, 51413, 51473, 71333, 75983
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A049438. - R. J. Mathar, May 06 2017

Examples

			p=23,23+6=29,23+6+2=31,23+6+2+6=37 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[7500]],4,1],Differences[#]=={6,2,6}&]][[1]] (* Harvey P. Dale, Apr 17 2015 *)

Formula

Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+2, p(i+3)=p+6+2+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078855 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[6, 4,2]; short d-string notation of pattern = [642].

Original entry on oeis.org

31, 61, 271, 607, 1291, 1657, 1777, 1861, 1987, 2131, 2371, 2677, 2791, 4507, 5407, 5431, 5641, 7867, 9001, 11821, 13681, 14551, 17377, 18121, 18301, 20347, 21481, 22147, 24097, 27271, 32707, 35521, 36781, 37561, 41221, 41947, 42397, 42451
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A078562. - R. J. Mathar, May 06 2017

Examples

			p=31,31+6=37,31+6+4=41,31+6+4+2=43 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[4500]],4,1],Differences[#] == {6,4,2}&]][[1]] (* Harvey P. Dale, Feb 10 2015 *)

Formula

Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+4, p(i+3)=p+6+4+2.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078848 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[2,6,4]; short d-string notation of pattern = [264].

Original entry on oeis.org

29, 59, 71, 269, 431, 1289, 2129, 2339, 2381, 2789, 4721, 5519, 5639, 5849, 6569, 6959, 8999, 10091, 13679, 14549, 16649, 16691, 18119, 19379, 19751, 21491, 25931, 27689, 27791, 28619, 31181, 32369, 32561, 32831, 36779, 41609, 43961, 45119
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A049437. - R. J. Mathar, Feb 10 2013

Examples

			29, 29+2=31, 29+2+6=37, 29+2+6+4=41 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    d = {2, 6, 4}; First /@ Select[Partition[Prime@ Range[10^4], Length@ d + 1, 1], Differences@ # == d &] (* Michael De Vlieger, May 02 2016 *)
    Select[Partition[Prime[Range[4700]],4,1],Differences[#]=={2,6,4}&][[All,1]] (* Harvey P. Dale, Mar 08 2020 *)

Formula

Primes p=p(i) such that p(i+1)=p+2, p(i+2)=p+2+6, p(i+3)=p+2+6+4.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009
Typo in example corrected by Michel Marcus, Dec 28 2013

A078851 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[4, 6, 2]; short d-string notation of pattern = [462].

Original entry on oeis.org

19, 127, 229, 1009, 1279, 1597, 1609, 2539, 3319, 3529, 3907, 3919, 4639, 4789, 4999, 5839, 5857, 7477, 7537, 8419, 9619, 12097, 12907, 13327, 15259, 15877, 17569, 17977, 19069, 22027, 23017, 24967, 27739, 28537, 32359, 33577, 36919, 38317
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A078561. - R. J. Mathar, May 06 2017

Examples

			p=19,19+4=23,19+4+6=29,19+4+6+2=31 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Select[Prime@ Range[10^4], Differences@ Prime@ Range[#, # + 3] &@ PrimePi@ # == {4, 6, 2} &] (* Michael De Vlieger, Jul 02 2016 *)

Formula

Primes p = p(i) such that p(i+1)=p+4, p(i+2)=p+4+6, p(i+3)=p+4+6+2.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078852 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[4, 6,6]; short d-string notation of pattern = [466].

Original entry on oeis.org

43, 163, 643, 937, 967, 1093, 1213, 2953, 4003, 4447, 6967, 7573, 8737, 9463, 10243, 10597, 11923, 12487, 12637, 13033, 14533, 14737, 15787, 16087, 16417, 16477, 16927, 17317, 17467, 20113, 22063, 25453, 26683, 26713, 27763, 29863, 32983
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A078561. - R. J. Mathar, Feb 11 2013

Examples

			p=43,43+4=47,43+4+6=53,43+4+6+6=59 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[4000]],4,1],Differences[#]=={4,6,6}&]][[1]] (* Harvey P. Dale, Dec 15 2015 *)
  • PARI
    isok(n) = isprime(n) && (nextprime(n+1) == (n+4)) && (nextprime(n+5) == (n+10)) && (nextprime(n+11) == (n+16)) \\ Michel Marcus, Jul 23 2013

Formula

Primes p = p(i) such that p(i+1)=p+4, p(i+2)=p+4+6, p(i+3)=p+4+6+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078849 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[2, 6,6]; short d-string notation of pattern = [266].

Original entry on oeis.org

149, 599, 3299, 4649, 5099, 6359, 11489, 12539, 16979, 19469, 27059, 30089, 31319, 34259, 42179, 53609, 58229, 63689, 65699, 71339, 75209, 77549, 78569, 80909, 81929, 85829, 87509, 87539, 89519, 92219, 101279, 105359, 112289, 116099, 116789
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A049437. - R. J. Mathar, Feb 10 2013

Examples

			149, 149+2=151, 149+2+6=157, 149+2+6+6=163 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    d = {2, 6, 6}; First /@ Select[Partition[Prime@ Range@ 12000, Length@ d + 1, 1], Differences@ # == d &] (* Michael De Vlieger, May 02 2016 *)
    Select[Partition[Prime[Range[12000]],4,1],Differences[#]=={2,6,6}&][[All,1]] (* Harvey P. Dale, Dec 29 2017 *)

Formula

Primes p = p(i) such that p(i+1)=p+2, p(i+2)=p+2+6, p(i+3)=p+2+6+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078853 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d = 2, 4 or 6) and forming d-pattern=[6,2,4]; short d-string notation of pattern = [624].

Original entry on oeis.org

1601, 3911, 5471, 8081, 12101, 12911, 13751, 14621, 17021, 32051, 38321, 40841, 43391, 58901, 65831, 67421, 67751, 68891, 69821, 72161, 80141, 89591, 90011, 90191, 97571, 100511, 102191, 111821, 112241, 122021, 125921, 129281, 129581
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

All terms are == 11 (mod 30). Is 180 the minimal first difference? - Zak Seidov, Jun 27 2015
Subsequence of A049438. - R. J. Mathar, May 06 2017

Examples

			p=1601, 1601+6=1607, 1601+6+2=1609, 1601+6+2+4=1613 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], this sequence[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[13000]], 4, 1], Differences[#]=={6, 2, 4} &]][[1]] (* Vincenzo Librandi, Jun 27 2015 *)

Formula

Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+2, p(i+3)=p+6+2+4.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009
Showing 1-10 of 15 results. Next