A052410 Write n = m^k with m, k integers, k >= 1, then a(n) is the smallest possible choice for m.
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1
Keywords
Links
- Daniel Forgues, Table of n, a(n) for n=1..100000
- Eric Weisstein's World of Mathematics, Power
- Eric Weisstein's World of Mathematics, Perfect Power
Crossrefs
Programs
-
Haskell
a052410 n = product $ zipWith (^) (a027748_row n) (map (`div` (foldl1 gcd es)) es) where es = a124010_row n -- Reinhard Zumkeller, Jul 15 2012
-
Maple
a:= n-> (l-> (t-> mul(i[1]^(i[2]/t), i=l))( igcd(seq(i[2], i=l))))(ifactors(n)[2]): seq(a(n), n=1..74); # Alois P. Heinz, Jul 22 2024
-
Mathematica
Table[If[n==1, 1, n^(1/(GCD@@(Last/@FactorInteger[n])))], {n, 100}]
-
PARI
a(n) = if (ispower(n,,&r), r, n); \\ Michel Marcus, Jul 19 2017
-
Python
def upto(n): list = [1] + [0] * (n - 1) for i in range(2, n + 1): if not list[i - 1]: j = i while j <= n: list[j - 1] = i j *= i return list # M. Eren Kesim, Jun 03 2021
-
Python
from math import gcd from sympy import integer_nthroot, factorint def A052410(n): return integer_nthroot(n,gcd(*factorint(n).values()))[0] if n>1 else 1 # Chai Wah Wu, Mar 02 2024
Formula
Extensions
Definition edited (in a complementary form to A052409) by Daniel Forgues, Mar 14 2009
Corrected by Charles R Greathouse IV, Sep 02 2009
Definition edited by N. J. A. Sloane, Sep 03 2010
Comments