cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052423 Highest common factor of nonzero digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Mar 17 2000

Keywords

Examples

			a(46) = 2 because the highest common factor of 4 and 6 is 2.
a(47) = 1 because the highest common factor of 4 and 7 is 1.
		

Crossrefs

Cf. A007954.

Programs

  • Haskell
    a052423 n = f n n where
       f x 1 = 1
       f x y | x < 10    = gcd x y
             | otherwise = if d == 1 then 1 else f x' (gcd d y)
             where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 14 2014
    
  • Maple
    a:= n-> igcd(subs(0=[][], convert(n, base, 10))[]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 04 2020
  • Mathematica
    Table[Apply[GCD, IntegerDigits[n]], {n, 100}] (* Alonso del Arte, Apr 02 2020 *)
  • PARI
    a(n) = my(d=digits(n)); gcd(select(x->(x!=0), d)); \\ Michel Marcus, Apr 04 2020
  • Scala
    def euclGCD(a: Int, b: Int): Int = b match { case 0 => a; case n => Math.abs(euclGCD(b, a % b)) }
    def digitGCD(n: Int) = n.toString.toCharArray.map( - 48).scanLeft(0)(euclGCD(, _)).last
    (1 to 100).map(digitGCD()) // _Alonso del Arte, Apr 02 2020
    

Formula

a(A069715(n)) = 1. - Reinhard Zumkeller, Apr 14 2014