cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A069715 GCD of digits of n is 1.

Original entry on oeis.org

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 32, 34, 35, 37, 38, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 67, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 87, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108
Offset: 1

Views

Author

Labos Elemer, Apr 02 2002

Keywords

Examples

			All numbers with at least one digit equal to 1 are here.
		

Crossrefs

Cf. A011531 (subsequence), A240913 (subsequence).

Programs

  • Haskell
    a069715 n = a069715_list !! (n-1)
    a069715_list = filter ((== 1) . a052423) [1..]
    -- Reinhard Zumkeller, Apr 14 2014
    
  • Mathematica
    Do[s=Apply[GCD, IntegerDigits[n]]; If[Equal[s, 1], Print[n]], {n, 1, 256}]
  • PARI
    is(n)=gcd(digits(n))==1 \\ Charles R Greathouse IV, Nov 01 2014

Formula

A052423(a(n)) = 1. - Reinhard Zumkeller, Apr 14 2014
a(n) ~ n. In fact a(n) = n + O(n^(log 5/log 10)). - Charles R Greathouse IV, Nov 01 2014

A240913 Numbers m such that GCD of digits of m is 1 and no digit of m is 1.

Original entry on oeis.org

23, 25, 27, 29, 32, 34, 35, 37, 38, 43, 45, 47, 49, 52, 53, 54, 56, 57, 58, 59, 65, 67, 72, 73, 74, 75, 76, 78, 79, 83, 85, 87, 89, 92, 94, 95, 97, 98, 203, 205, 207, 209, 223, 225, 227, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 243, 245, 247, 249
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 14 2014

Keywords

Comments

A052423(a(n)) = 1.

Crossrefs

Subsequence of A069715.

Programs

  • Haskell
    a240913 n = a240913_list !! (n-1)
    a240913_list = filter (not . elem '1' . show) a069715_list
    
  • Mathematica
    gcdQ[n_]:=Module[{idn=IntegerDigits[n]},!MemberQ[idn,1]&&GCD@@idn==1]; Select[ Range[300],gcdQ] (* Harvey P. Dale, Dec 17 2014 *)
  • PARI
    is(n)=my(d=Set(digits(n))); setsearch(d,1)==0 && gcd(d)==1 \\ Charles R Greathouse IV, Nov 01 2014

A062078 LCM of the digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 2, 6, 4, 10, 6, 14, 8, 18, 0, 3, 6, 3, 12, 15, 6, 21, 24, 9, 0, 4, 4, 12, 4, 20, 12, 28, 8, 36, 0, 5, 10, 15, 20, 5, 30, 35, 40, 45, 0, 6, 6, 6, 12, 30, 6, 42, 24, 18, 0, 7, 14, 21, 28, 35, 42, 7, 56, 63
Offset: 1

Views

Author

Amarnath Murthy, Jun 15 2001

Keywords

Examples

			a(25) = 10, a(24) = 4.
		

Crossrefs

Programs

  • Maple
    a:= n-> ilcm(convert(n, base, 10)[]):
    seq(a(n), n=1..99);  # Alois P. Heinz, May 15 2024
  • Mathematica
    Table[LCM@@IntegerDigits[n],{n,120}] (* Harvey P. Dale, Feb 19 2017 *)
  • PARI
    a(n)={ lcm(digits(n)) } \\ Harry J. Smith, Jul 31 2009

Formula

a(n) <= 2520. - Sean A. Irvine, Mar 18 2023

A350494 Divide n by the greatest common divisor of the nonzero digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 10, 31, 32, 11, 34, 35, 12, 37, 38, 13, 10, 41, 21, 43, 11, 45, 23, 47, 12, 49, 10, 51, 52, 53, 54, 11, 56, 57, 58, 59, 10, 61, 31, 21, 32, 65, 11, 67
Offset: 1

Views

Author

Rémy Sigrist, Jan 01 2022

Keywords

Examples

			a(42) = 42 / gcd(4, 2) = 42 / 2 = 21.
		

Crossrefs

Programs

  • PARI
    a(n) = n / gcd(digits(n))
    
  • Python
    from math import gcd
    def a(n): return n//gcd(*[int(d) for d in str(n)])
    print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Jan 01 2022

Formula

a(n) = n / A052423(n).
a(n) = n iff n belongs to A069715.
a(a(n)) = a(n).

A364135 Let d_r d_{r-1} ... d_1 d_0 be the decimal expansion of n; a(n) is the number of nonnegative integer solutions x_r ... x_0 to the Diophantine equation d_r*x_r + ... + d_0*x_0 = n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 7, 5, 4, 4, 3, 3, 3, 3, 1, 11, 12, 4, 7, 3, 5, 2, 4, 2, 1, 11, 6, 12, 3, 3, 7, 2, 2, 5, 1, 11, 11, 4, 12, 3, 4, 2, 7, 2, 1, 11, 6, 4, 3, 12, 2, 2, 2, 2, 1, 11, 11, 11, 6, 3, 12, 2, 3, 4, 1, 11, 6, 4, 3, 3, 2, 12, 2, 2, 1, 11, 11
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 10 2023

Keywords

Comments

For a formula for a(n), please see the Samsonadze article in Links section. a(n) = P(b) if n = b AND the nonzero digits of b are the coefficients a_i (in the article).
a(n) is the number of partitions of n into parts that are nonzero digits of n. - Stefano Spezia, Feb 17 2024

Examples

			For n = 10: 1*x_1 + 0*x_0 = 10, the solution is x_1 = 10, thus a(10) = 1.
For n = 22: 2*x_1 + 2*x_0 = 22, the solutions are (0,11), (2,10), ..., (11,0), thus a(22) = 12.
		

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := Module[{ds = IntegerDigits[n], p, t, v}, p = Table[If[d == 0, {0}, Range[0, Quotient[n, d]]], {d, ds}]; t = Tuples[p]; v = Select[t, ds . # == n &]; Length[v]]; Table[a[n], {n, 1, 82}] (* Robert P. P. McKone, Aug 25 2023 *)
    a[n_]:=Length[IntegerPartitions[n, All,DeleteCases[ IntegerDigits[n],0]]]; Array[a,82] (* Stefano Spezia, Feb 17 2024 *)

Formula

a(n) = 1 for n = (d 0 ... 0), the digit d >= 1, the number of zeros >= 0.
a(n) = (1 ... 1) + 1 for n = (d ... d), the digit d >= 1, n >= 10.

A378513 a(1) = 1, a(n) = a(n-1) + n if all the digits of a(n-1) do not share a divisor greater than 1. Otherwise, a(n) = a(n-1) divided by the gcd of all its individual digits.

Original entry on oeis.org

1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 22, 11, 24, 12, 27, 43, 60, 10, 29, 49, 70, 10, 33, 11, 36, 12, 39, 13, 42, 21, 52, 84, 21, 55, 11, 47, 84, 21, 60, 10, 51, 93, 31, 75, 120, 166, 213, 261, 310, 360, 120, 172, 225, 279, 334, 390, 130, 188, 247, 307, 368, 430
Offset: 1

Views

Author

Stuart Coe, Nov 29 2024

Keywords

Comments

It can be shown that this sequence will grow indefinitely: Once it has reached a given number of digits in length, it cannot drop below that number of digits. Regardless of the number of times the number is reduced by dividing by GCDs, n will inevitably be great enough to increase a(n) to a larger and larger number of digits in length.

Examples

			a(37) = 47 + 37, because the digits of 47 do not share a factor greater than 1.
a(38) = 84 / 4 = 21, because the gcd of 8 and 4 is 4.
		

Crossrefs

Cf. A052423 (gcd of digits).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, (t-> (g->
          `if`(g=1, t+n, t/g))(igcd(convert(t, base, 10)[])))(a(n-1)))
        end:
    seq(a(n), n=1..62);  # Alois P. Heinz, Nov 29 2024
  • Mathematica
    Module[{n = 1, g}, NestList[If[n++; (g = GCD @@ IntegerDigits[#]) == 1, # + n, #/g] &, 1, 100]] (* Paolo Xausa, Dec 16 2024 *)
  • PARI
    lista(nn) = my(v=vector(nn)); v[1] = 1; for (n=2, nn, my(g=gcd(digits(v[n-1]))); if (g == 1, v[n] = v[n-1]+n, v[n] = v[n-1]/g);); v; \\ Michel Marcus, Dec 09 2024
Showing 1-6 of 6 results.