A378513 a(1) = 1, a(n) = a(n-1) + n if all the digits of a(n-1) do not share a divisor greater than 1. Otherwise, a(n) = a(n-1) divided by the gcd of all its individual digits.
1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 22, 11, 24, 12, 27, 43, 60, 10, 29, 49, 70, 10, 33, 11, 36, 12, 39, 13, 42, 21, 52, 84, 21, 55, 11, 47, 84, 21, 60, 10, 51, 93, 31, 75, 120, 166, 213, 261, 310, 360, 120, 172, 225, 279, 334, 390, 130, 188, 247, 307, 368, 430
Offset: 1
Examples
a(37) = 47 + 37, because the digits of 47 do not share a factor greater than 1. a(38) = 84 / 4 = 21, because the gcd of 8 and 4 is 4.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A052423 (gcd of digits).
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, (t-> (g-> `if`(g=1, t+n, t/g))(igcd(convert(t, base, 10)[])))(a(n-1))) end: seq(a(n), n=1..62); # Alois P. Heinz, Nov 29 2024
-
Mathematica
Module[{n = 1, g}, NestList[If[n++; (g = GCD @@ IntegerDigits[#]) == 1, # + n, #/g] &, 1, 100]] (* Paolo Xausa, Dec 16 2024 *)
-
PARI
lista(nn) = my(v=vector(nn)); v[1] = 1; for (n=2, nn, my(g=gcd(digits(v[n-1]))); if (g == 1, v[n] = v[n-1]+n, v[n] = v[n-1]/g);); v; \\ Michel Marcus, Dec 09 2024
Comments