A103815
a(n) = -1 + Product_{k=1..n} Fibonacci(k).
Original entry on oeis.org
0, 0, 1, 5, 29, 239, 3119, 65519, 2227679, 122522399, 10904493599, 1570247078399, 365867569267199, 137932073613734399, 84138564904377983999, 83044763560621070207999, 132622487406311849122175999, 342696507457909818131702783999, 1432814097681520949608649339903999
Offset: 1
a(15) = 1 * 1 * 2 * 3 * 5 * 8 * 13 * 21 * 34 * 55 * 89 * 144 * 233 * 377 * 610 - 1 = 84138564904377983999 is prime.
-
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> -1 + mul(F(i), i=1..n):
seq(a(n), n=1..20); # Alois P. Heinz, Aug 09 2018
-
FoldList[Times,Fibonacci[Range[20]]]-1 (* Harvey P. Dale, Aug 29 2021 *)
A159950
Dividends where Fibonacci products/sums yield integral quotients.
Original entry on oeis.org
240, 122522400, 137932073613734400, 342696507457909818131702784000, 1879127177606120717127879344567470740879360000, 22740756589119797763590969093409514524935686067027158720512000000
Offset: 1
This table illustrates the alternating nature of the first three integral quotients: 1 1 2 3 -- 6/7=.85+ 5 8 -- 240/20=12 Integral 13 21 -- 65520/54=1213.33+ 34 55 -- 122522400/143=856800 Integral 89 144 -- 1570247078400/376=4176189038.29+ 233 377 -- 137932073613734400/986=139890541190400 Integral etc.
-
seq(mul(fibonacci(k), k = 1..4*n+2), n = 1..10); # Peter Bala, Nov 04 2021
-
10 'Fibo 20 'R=SUM:S=PRODUCT 30 'T integral every other pair 40 A=1:S=1:print A;:S=S*1 50 B=1:print B;:S=S*B 60 C=A+B:print C;:R=R+C:S=S*C 70 D=B+C:print D;:R=R+D:R=R+2:print R:S=S*D:print S 80 T=S/R:if T=int(S/R) then print T:stop 90 A=C:B=D:R=R-2:goto 60
A103845
Product of first n Lucas numbers, plus one.
Original entry on oeis.org
1, 2, 4, 13, 85, 925, 16633, 482329, 22669417, 1722875617, 211913700769, 42170826452833, 13579006117811905, 7074662187380001985, 5963940223961341672513, 8134814465483270041306369
Offset: 0
a(10) = 1 * 3 * 4 * 7 * 11 * 18 * 29 * 47 * 76 * 123 + 1 = 211913700769 = 349 * 607202581 which is semiprime.
-
Join[{1},Rest[FoldList[Times,1,LucasL[Range[20]]]]+1] (* Harvey P. Dale, Oct 25 2011 *)
Showing 1-3 of 3 results.
Comments