cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052466 a(n) is the smallest positive solution k to 24*k == 1 (mod 13^n).

Original entry on oeis.org

6, 162, 1007, 27371, 170176, 4625692, 28759737, 781741941, 4860395546, 132114388022, 821406847267, 22327331575711, 138817757188116, 3773319036295152, 23460200964791597, 637690917133880681, 3964773963049779886, 107769764995625835082, 670046799755412800727
Offset: 1

Views

Author

Keywords

Comments

Related to a generalization of a Ramanujan congruence for the partition function P = A000041.
Atkin and O'Brien (1967) proved that for all integral n >= 1, there is an integral constant K(n) not divisible by 13 s.t. P(169*m - 7) == K(n)*P(m) (mod 13^n) for all integral m >= 1 that satisfy 24*m == 1 (mod 13^n). In particular, P(169*a(n) - 7) == K(n)*P(a(n)) (mod 13^n) for all n >= 1. Unfortunately, the calculation of the integral constants K(n) depends on several recursions found in the paper. (For each n, there are infinitely many such K(n)'s, but one may choose the smallest one that satisfies the above property.) See Theorem 2, p. 444, in their paper, even though their P is different that the P = A000041 here. - Petros Hadjicostas, Jul 29 2020
From Petros Hadjicostas, Aug 02 2020: (Start)
Assume n = 2*m, where m >= 1, and 24*k == 1 (mod 13^(2*m)), where k >= 1. Then there is an integer x = x(k) s.t. 24*k - 1 = 169^m*x. Then 1 = 24*k - 169^m*x == 0 - 1^m*x == -x (mod 24). With x = x(k) = 23, we find a(2*m), the smallest value of k >= 1 that satisfies 24*k == 1 (mod 13^(2*m)). Thus, a(2*m) = (1 + 23*13^(2*m))/24.
Assume now n = 2*m + 1, where m >= 0, and 24*k == 1 (mod 13^(2*m+1)), where k >= 1. Then there is an integer x = x(k) s.t. 24*k - 1 = 13*169^m*x. Then 1 = 24*k - 13*169^m*x == 0 - 13*1^m*x == -13*x (mod 24). With x = x(k) = 11, we find a(2*m+1), the smallest value of k >= 1 that satisfies 24*k == 1 (mod 13^(2*m)). Thus, a(2*m+1) = (1 + 11*13^(2*m+1))/24. (End)

Examples

			From _Petros Hadjicostas_, Jul 29 2020: (Start)
The only value of the constant K(n) that appears explicitly in Atkin and O'Brien (1967) is K(2) = 45 (see p. 453). We then have
P(169*a(2) - 7) - K(2)*P(a(2)) = P(169*162 - 7) - 45*P(162) = A000041(27371) - 45*A000041(162) = A000041(27371) - 5846125708665 == 0 (mod 13^2).
Thus, we must have A000041(27371) == 99 (mod 169). (End)
		

Crossrefs

Programs

  • Magma
    I:=[6, 162, 1007]; [n le 3 select I[n] else Self(n-1)+169*Self(n-2)-169*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 01 2012
    
  • Mathematica
    Table[PowerMod[24, -1, 13^d], {d, 20}]
    CoefficientList[Series[(-169x^2+156x+6)/((1-x)(1-13x)(1+13x)),{x,0,40}],x] (* Vincenzo Librandi, Jul 01 2012 *)
    LinearRecurrence[{1,169,-169},{6,162,1007},30] (* Harvey P. Dale, Mar 15 2015 *)
  • PARI
    a(n) = lift(Mod(24, 13^n)^-1) \\ Petros Hadjicostas, Jul 29 2020
    
  • SageMath
    def a(n): return 24.inverse_mod(13^n)
    print([a(n) for n in range(1, 20)]) # Peter Luschny, Jul 30 2020

Formula

G.f.: x*(-169*x^2 + 156*x + 6)/((1 - x)*(1 - 13*x)*(1 + 13*x)). - Vincenzo Librandi, Jul 01 2012
a(n) = a(n-1) + 169*a(n-2) - 169*a(n-3). - Vincenzo Librandi, Jul 01 2012
From Petros Hadjicostas, Aug 02 2020: (Start)
a(n) = (1 + 11*13^n)/24, if n is odd, and a(n) = (1 + 23*13^n)/24, if n is even.
a(n) - a(n-1) = 12*13^(n-1) for n even >= 2, and 5*13^(n-1) for n odd >= 3. (End)

Extensions

Name edited by Petros Hadjicostas, Jul 29 2020