A052466 a(n) is the smallest positive solution k to 24*k == 1 (mod 13^n).
6, 162, 1007, 27371, 170176, 4625692, 28759737, 781741941, 4860395546, 132114388022, 821406847267, 22327331575711, 138817757188116, 3773319036295152, 23460200964791597, 637690917133880681, 3964773963049779886, 107769764995625835082, 670046799755412800727
Offset: 1
Examples
From _Petros Hadjicostas_, Jul 29 2020: (Start) The only value of the constant K(n) that appears explicitly in Atkin and O'Brien (1967) is K(2) = 45 (see p. 453). We then have P(169*a(2) - 7) - K(2)*P(a(2)) = P(169*162 - 7) - 45*P(162) = A000041(27371) - 45*A000041(162) = A000041(27371) - 5846125708665 == 0 (mod 13^2). Thus, we must have A000041(27371) == 99 (mod 169). (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..900
- A. O. L. Atkin and J. N. O'Brien, Some Properties of p(n) and c(n) Modulo Powers of 13, Trans. Amer. Math. Soc. 126 (1967), 442-459.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Index entries for linear recurrences with constant coefficients, signature (1,169,-169).
Programs
-
Magma
I:=[6, 162, 1007]; [n le 3 select I[n] else Self(n-1)+169*Self(n-2)-169*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 01 2012
-
Mathematica
Table[PowerMod[24, -1, 13^d], {d, 20}] CoefficientList[Series[(-169x^2+156x+6)/((1-x)(1-13x)(1+13x)),{x,0,40}],x] (* Vincenzo Librandi, Jul 01 2012 *) LinearRecurrence[{1,169,-169},{6,162,1007},30] (* Harvey P. Dale, Mar 15 2015 *)
-
PARI
a(n) = lift(Mod(24, 13^n)^-1) \\ Petros Hadjicostas, Jul 29 2020
-
SageMath
def a(n): return 24.inverse_mod(13^n) print([a(n) for n in range(1, 20)]) # Peter Luschny, Jul 30 2020
Formula
G.f.: x*(-169*x^2 + 156*x + 6)/((1 - x)*(1 - 13*x)*(1 + 13*x)). - Vincenzo Librandi, Jul 01 2012
a(n) = a(n-1) + 169*a(n-2) - 169*a(n-3). - Vincenzo Librandi, Jul 01 2012
From Petros Hadjicostas, Aug 02 2020: (Start)
a(n) = (1 + 11*13^n)/24, if n is odd, and a(n) = (1 + 23*13^n)/24, if n is even.
a(n) - a(n-1) = 12*13^(n-1) for n even >= 2, and 5*13^(n-1) for n odd >= 3. (End)
Extensions
Name edited by Petros Hadjicostas, Jul 29 2020
Comments