cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052469 Denominators in the Taylor series for arccosh(x) - log(2*x).

Original entry on oeis.org

4, 32, 96, 1024, 2560, 4096, 28672, 524288, 1179648, 5242880, 11534336, 100663296, 218103808, 939524096, 134217728, 68719476736, 146028888064, 206158430208, 1305670057984, 2199023255552, 7696581394432, 96757023244288, 202310139510784, 1125899906842624
Offset: 1

Views

Author

Keywords

Examples

			arccosh(x) = log(2x) - 1/(4*x^2) - 3/(32*x^4) - 5/(96*x^6) - ... for x>1.
		

References

  • Bronstein-Semendjajew, sprawotchnik po matematikje, 6th Russian ed. 1956, ch. 4.2.6.

Crossrefs

Cf. A002595.

Programs

  • GAP
    List([1..30], n-> DenominatorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
  • Magma
    [Denominator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
    
  • Mathematica
    a[n_] := Denominator[(2*n-1)!/(2^(2*n)*n!^2)]; Array[a, 21] (* Jean-François Alcover, May 17 2017 *)
  • PARI
    {a(n) = denominator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
    
  • Sage
    [denominator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
    

Formula

A052468(n) / a(n) = A001147(n) / ( A000165(n) *2*n )
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = denom((2*n-1)!/( 4^n * (n!)^2)).
Equals 2*A162442(n+1) for n >= 1.
A052468(n)/a(n) = (1/(2*n))*A001790(n)/A046161(n) for n>=1.
(End)

Extensions

Updated by Frank Ellermann, May 22 2001