cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052496 Number of nonsingular n X n matrices over GF(8).

Original entry on oeis.org

1, 7, 3528, 115379712, 241909719367680, 32467582052437076213760, 278893342293098904613804037898240, 153323163270070838469523866093442017326530560
Offset: 0

Views

Author

Vladeta Jovovic, Mar 16 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(8^n-8^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 30 2013
    
  • Mathematica
    Table[Product[(8^n - 8^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
  • PARI
    {a(n) = prod(j=0,n-1, 8^n - 8^j)}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    [product(8^n - 8^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019

Formula

a(n) = (8^n - 1)*(8^n - 8)*...*(8^n - 8^(n-1)).
a(n) = A109966(n)*A027876(n). - Bruno Berselli, Jan 30 2013
a(n) ~ c * 8^(n^2), where c = A132036. - Amiram Eldar, Jul 06 2025

A052497 Number of nonsingular n X n matrices over GF(9).

Original entry on oeis.org

1, 8, 5760, 339655680, 1624314979123200, 629282246371356907929600, 19747506525777609095698646040576000, 50195501537943419769100848121708339934527488000
Offset: 0

Views

Author

Vladeta Jovovic, Mar 16 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(9^n - 9^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 28 2013
    
  • Mathematica
    Table[Product[(9^n - 9^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
  • PARI
    {a(n) = prod(j=0,n-1, 9^n - 9^j)}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    [product(9^n - 9^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019

Formula

a(n) = (9^n - 1)*(9^n - 9)*...*(9^n - 9^(n-1)).
a(n) = A053764(n)*A027877(n). - Bruno Berselli, Jan 30 2013
a(n) ~ c * 9^(n^2), where c = A132037. - Amiram Eldar, Jul 06 2025

A220790 Product(6^n - 6^k, k=0..n-1).

Original entry on oeis.org

1, 5, 1050, 8127000, 2273284440000, 22906523331216000000, 8310241106635054164480000000, 108537128570336598656772717772800000000, 51032497739317419104816901041614046625792000000000
Offset: 0

Views

Author

Vincenzo Librandi, Jan 28 2013

Keywords

Crossrefs

Sequences given by product(m^n-m^k, k=0..n-1): A002884 (m=2), A053290 (m=3), A053291 (m=4), A053292 (m=5), A053293 (m=7), A052496 (m=8), A052497 (m=9), A052498 (m=11).

Programs

  • Magma
    [1] cat [&*[(6^n - 6^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
    
  • Magma
    /* By the second formula: */
    m:=9;
    A109354 := [6^(n*(n-1) div 2): n in [0..m-1]];
    A027873 := [1] cat [&*[6^i-1: i in [1..n]]: n in [1..m]];
    [A109354[i]*A027873[i]: i in [1..m]]; // Bruno Berselli, Jan 30 2013
  • Mathematica
    Table[Product[6^n - 6^k, {k, 0, n-1}], {n, 0, 60}]

Formula

a(n) = (6^n - 1)*(6^n - 6)*...*(6^n - 6^(n-1)) for n>0, a(0)=1.
a(n) = A109354(n)*A027873(n). - Bruno Berselli, Jan 30 2013

A335384 Order of the finite groups GL(m,q) [or GL_m(q)] in increasing order as q runs through the prime powers.

Original entry on oeis.org

6, 48, 168, 180, 480, 2016, 3528, 5760, 11232, 13200, 20160, 26208, 61200, 78336, 123120, 181440, 267168, 374400, 511056, 682080, 892800, 1014816, 1488000, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 9999360, 11908560, 13615200, 16511040, 19845936, 24261120, 25048800, 28003968
Offset: 1

Views

Author

Bernard Schott, Jun 04 2020

Keywords

Comments

GL(m,q) is the general linear group, the group of invertible m X m matrices over the finite field F_q with q = p^k elements.
By definition, all fields must contain at least two distinct elements, so q >= 2. As GL(1,q) is isomorphic to F_q*, the multiplicative group [whose order is p^k-1 (A181062)] of finite field F_q, data begins with m >= 2.
Some isomorphisms (let "==" denote "isomorphic to"):
a(1) = 6 for GL(2,2) == PSL(2,2) == S_3.
a(2) = 48 for GL(2,3) that has 55 subgroups.
a(3) = 168 for GL(3,2) == PSL(2,7) [A031963].
a(11) = 20160 for GL(4,2) == PSL(4,2) == Alt(8).
Array for order of GL(m,q) begins:
=============================================================
m\q | 2 3 4=2^2 5 7
-------------------------------------------------------------
2 | 6 48 180 480 2016
3 | 168 11232 181440 1488000 33784128
4 | 20160 24261120 2961100800 116064000000 #GL(4,7)
5 |9999360 #GL(5,3) ... ... ...

Examples

			a(1) = #GL(2,2) = (2^2-1)*(2^2-2) = 3*2 = 6 and the 6 elements of GL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 invertible matrices with entries in F_2:
  (1 0)   (1 1)   (1 0)   (0 1)   (0 1)   (1 1)
  (0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0).
a(2) = #GL(2,3) = (3^2-1)*(3^2-3) = 8*6 = 48.
a(3) = #GL(3,2) = (2^3-1)*(2^3-2)*(2^3-2^2) = 168.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • Daniel Perrin, Cours d'Algèbre, Maths Agreg, Ellipses, 1996, pages 95-115.

Crossrefs

Cf. A059238 [GL(2,q)].
Cf. A002884 [GL(m,2)], A053290 [GL(m,3)], A053291 [GL(m,4)], A053292 [GL(m,5)], A053293 [GL(m,7)], A052496 [GL(m,8)], A052497 [GL(m,9)], A052498 [GL(m,11)].
Cf. A316622 [GL(n,Z_k)].

Formula

#GL(m,q) = Product_{k=0..m-1}(q^m-q^k).
Showing 1-4 of 4 results.