cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052509 Knights-move Pascal triangle: T(n,k), n >= 0, 0 <= k <= n; T(n,0) = T(n,n) = 1, T(n,k) = T(n-1,k) + T(n-2,k-1) for k = 1,2,...,n-1, n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 11, 8, 4, 2, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 8, 22, 26, 16, 8, 4, 2, 1, 1, 9, 29, 42, 31, 16, 8, 4, 2, 1, 1, 10, 37, 64, 57, 32, 16, 8, 4, 2, 1, 1, 11, 46, 93, 99, 63, 32, 16, 8, 4, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2000

Keywords

Comments

Also square array T(n,k) (n >= 0, k >= 0) read by antidiagonals: T(n,k) = Sum_{i=0..k} binomial(n,i).
As a number triangle read by rows, this is T(n,k) = Sum_{i=n-2*k..n-k} binomial(n-k,i), with T(n,k) = T(n-1,k) + T(n-2,k-1). Row sums are A000071(n+2). Diagonal sums are A023435(n+1). It is the reverse of the Whitney triangle A004070. - Paul Barry, Sep 04 2005
Also, twice number of orthants intersected by a generic k-dimensional subspace of R^n [Naiman and Scheinerman, 2017]. - N. J. A. Sloane, Mar 03 2018

Examples

			Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2,  1;
[3] 1, 3,  2,  1;
[4] 1, 4,  4,  2,  1;
[5] 1, 5,  7,  4,  2,  1;
[6] 1, 6, 11,  8,  4,  2, 1;
[7] 1, 7, 16, 15,  8,  4, 2, 1;
[8] 1, 8, 22, 26, 16,  8, 4, 2, 1;
[9] 1, 9, 29, 42, 31, 16, 8, 4, 2, 1;
As a square array, this begins:
  1  1  1  1  1  1 ...
  1  2  2  2  2  2 ...
  1  3  4  4  4  4 ...
  1  4  7  8  8  8 ...
  1  5 11 15 16 ...
  1  6 16 26 31 32 ...
		

Crossrefs

Row sums A000071; Diagonal sums A023435; Mirror A004070.
Columns give A000027, A000124, A000125, A000127, A006261, ...
Partial sums across rows of (extended) Pascal's triangle A052553.

Programs

  • GAP
    A052509:=Flat(List([0..100],n->List([0..n],k->Sum([0..n],m->Binomial(n-k,k-m))))); # Muniru A Asiru, Sat Feb 17 2018
    
  • Haskell
    a052509 n k = a052509_tabl !! n !! k
    a052509_row n = a052509_tabl !! n
    a052509_tabl = [1] : [1,1] : f [1] [1,1] where
       f row' row = rs : f row rs where
         rs = zipWith (+) ([0] ++ row' ++ [1]) (row ++ [0])
    -- Reinhard Zumkeller, Nov 22 2012
    
  • Magma
    [[(&+[Binomial(n-k, k-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 13 2019
    
  • Maple
    a := proc(n::nonnegint, k::nonnegint) option remember: if k=0 then RETURN(1) fi: if k=n then RETURN(1) fi: a(n-1,k)+a(n-2,k-1) end: for n from 0 to 11 do for k from 0 to n do printf(`%d,`,a(n,k)) od: od: # James Sellers, Mar 17 2000
    with(combinat): for s from 0 to 11 do for n from s to 0 by -1 do if n=0 or s-n=0 then printf(`%d,`,1) else printf(`%d,`,sum(binomial(n, i), i=0..s-n)) fi; od: od: # James Sellers, Mar 17 2000
  • Mathematica
    Table[Sum[Binomial[n-k, k-m], {m, 0, n}], {n, 0, 10}, {k, 0, n}]
    T[n_, k_] := Hypergeometric2F1[-k, -n + k, -k, -1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 28 2021 *)
  • PARI
    T(n,k)=sum(m=0,n,binomial(n-k,k-m));
    for(n=0,10,for(k=0,n,print1(T(n,k),", "););print();); /* show triangle */
    
  • Sage
    [[sum(binomial(n-k, k-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 13 2019

Formula

T(n, k) = Sum_{m=0..n} binomial(n-k, k-m). - Wouter Meeussen, Oct 03 2002
From Werner Schulte, Feb 15 2018: (Start)
Referring to the square array T(i,j):
G.f. of row n: Sum_{k>=0} T(n,k) * x^k = (1+x)^n / (1-x).
G.f. of T(i,j): Sum_{k>=0, n>=0} T(n,k) * x^k * y^n = 1 / ((1-x)*(1-y-x*y)).
Let a_i(n) be multiplicative with a_i(p^e) = T(i, e), p prime and e >= 0, then Sum_{n>0} a_i(n)/n^s = (zeta(s))^(i+1) / (zeta(2*s))^i for i >= 0.
(End)
T(n, k) = hypergeom([-k, -n + k], [-k], -1). - Peter Luschny, Nov 28 2021
From Jianing Song, May 30 2022: (Start)
Referring to the triangle, G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = 1 / ((1-x*y)*(1-x-x^2*y)).
T(n,k) = 2^(n-k) for ceiling(n/2) <= k <= n. (End)

Extensions

More terms from James Sellers, Mar 17 2000
Entry formed by merging two earlier entries. - N. J. A. Sloane, Jun 17 2007
Edited by Johannes W. Meijer, Jul 24 2011