cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052518 Number of pairs of cycles of cardinality at least 2.

Original entry on oeis.org

0, 0, 0, 0, 6, 40, 260, 1848, 14616, 128448, 1246752, 13273920, 153996480, 1935048960, 26193473280, 380120670720, 5888620684800, 97007636275200, 1693590745190400, 31237853849395200, 607035345406156800
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Log(1-x)^2 + 2*x*Log(1-x) + x^2 )); [0,0,0,0] cat [Factorial(n+3)*b[n]: n in [1..m-4]]; // G. C. Greubel, May 13 2019
    
  • Maple
    Pairs spec := [S,{B=Cycle(Z,2 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{m = 25}, CoefficientList[Series[Log[1-x]^2 +2*x*Log[1-x] +x^2, {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 13 2019 *)
  • PARI
    a(n) = if (n <= 2, 0, round(2*(n-2)!*((n-1)*(psi(n)+Euler)-n))); \\ Michel Marcus, Jul 08 2015
    
  • PARI
    my(x='x+O('x^25)); concat(vector(4), Vec(serlaplace( log(1-x)^2 + 2*x*log(1-x) + x^2 ))) \\ G. C. Greubel, May 13 2019
    
  • Sage
    m = 25; T = taylor(log(1-x)^2 + 2*x*log(1-x) + x^2, x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019

Formula

E.g.f.: log(1-x)^2 + 2*x*log(1-x) + x^2.
n*a(n+2) + (1-n-2*n^2)*a(n+1) - n*(1-n^2)*a(n) = 0, with a(0) = ... = a(3) = 0, a(4) = 3!.
a(n) = 2*(n-2)!*((n-1)*(Psi(n) + gamma) - n), n>2. - Vladeta Jovovic, Sep 21 2003