A052520 Number of pairs of sequences of cardinality at least 2.
0, 0, 0, 0, 24, 240, 2160, 20160, 201600, 2177280, 25401600, 319334400, 4311014400, 62270208000, 958961203200, 15692092416000, 271996268544000, 4979623993344000, 96035605585920000, 1946321606541312000, 41359334139002880000, 919636959090769920000, 21356013827774545920000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 87.
Crossrefs
Programs
-
GAP
Concatenation([0,0,0,0], List([4..20], n-> (n-3)*Factorial(n))); # G. C. Greubel, May 13 2019
-
Magma
[n le 3 select 0 else (n-3)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
-
Maple
spec := [S,{B=Sequence(Z,2 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Table[Sum[n!, {i,4,n}], {n, 0, 19}] (* Zerinvary Lajos, Jul 12 2009 *) With[{nn=20},CoefficientList[Series[x^4/(x-1)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 03 2016 *)
-
PARI
{a(n) = if(n<4, 0, (n-3)*n!)}; \\ G. C. Greubel, May 13 2019
-
Sage
[0,0,0,0]+[(n-3)*factorial(n) for n in (4..20)] # G. C. Greubel, May 13 2019
Formula
E.g.f.: x^4/(1-x)^2.
(n-3)*a(n+1) + (2+n-n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = 0, a(4) = 24.
a(n) = (n-3)*n!, n>2.
a(n) = (n+1)!*(n-3)/(n+1), n>2. - Gary Detlefs, Oct 02 2011
From Amiram Eldar, Jan 14 2021: (Start)