cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052520 Number of pairs of sequences of cardinality at least 2.

Original entry on oeis.org

0, 0, 0, 0, 24, 240, 2160, 20160, 201600, 2177280, 25401600, 319334400, 4311014400, 62270208000, 958961203200, 15692092416000, 271996268544000, 4979623993344000, 96035605585920000, 1946321606541312000, 41359334139002880000, 919636959090769920000, 21356013827774545920000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • GAP
    Concatenation([0,0,0,0], List([4..20], n-> (n-3)*Factorial(n))); # G. C. Greubel, May 13 2019
  • Magma
    [n le 3 select 0 else (n-3)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{B=Sequence(Z,2 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[Sum[n!, {i,4,n}], {n, 0, 19}] (* Zerinvary Lajos, Jul 12 2009 *)
    With[{nn=20},CoefficientList[Series[x^4/(x-1)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 03 2016 *)
  • PARI
    {a(n) = if(n<4, 0, (n-3)*n!)}; \\ G. C. Greubel, May 13 2019
    
  • Sage
    [0,0,0,0]+[(n-3)*factorial(n) for n in (4..20)] # G. C. Greubel, May 13 2019
    

Formula

E.g.f.: x^4/(1-x)^2.
(n-3)*a(n+1) + (2+n-n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = 0, a(4) = 24.
a(n) = (n-3)*n!, n>2.
a(n) = (n+1)!*(n-3)/(n+1), n>2. - Gary Detlefs, Oct 02 2011
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=4} 1/a(n) = 59/36 - 2*e/3 - gamma/6 + Ei(1)/6 = 59/36 - (2/3)*A001113 - (1/6)*A001620 + A091725/2.
Sum_{n>=4} (-1)^n/a(n) = 1/36 - 1/(3*e) + gamma/6 - Ei(-1)/6 = 1/36 - (1/3)*A068985 + (1/6)*A001620 + (1/6)*A099285. (End)