A352589 Triangle read by rows: T(n,k) = number of tilings of a n X k rectangle using 2 X 2 and 1 X 1 tiles and dominoes, n >= 0, k = 0..n.
1, 1, 1, 1, 2, 8, 1, 3, 26, 163, 1, 5, 90, 1125, 15623, 1, 8, 306, 7546, 210690, 5684228, 1, 13, 1046, 51055, 2865581, 154869092, 8459468955, 1, 21, 3570, 344525, 38879777, 4207660108, 460706560545, 50280716999785, 1, 34, 12190, 2326760, 527889422, 114411435032, 25111681648122, 5492577770367562, 1202536689448371122
Offset: 0
Examples
Triangle T(n,k) begins n\k_0__1____2______3________4__________5___________6 0: 1 1: 1 1 2: 1 2 8 3: 1 3 26 163 4: 1 5 90 1125 15623 5: 1 8 306 7546 210690 5684228 6: 1 13 1046 51055 2865581 154869092 8459468955
Links
- Liang Kai, Rows n=0..27, flattened
- Gerhard Kirchner, Maxima code
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; local k, t; if n=0 or l=[] then 1 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) else for k while l[k]>0 do od; b(n, subsop(k=1, l))+ `if`(n>1, b(n, subsop(k=2, l)), 0)+ `if`(k
1, b(n, subsop(k=2, k+1=2, l)), 0), 0) fi end: T:= (n, k)-> b(max(n, k), [0$min(n, k)]): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, May 06 2022 -
Mathematica
b[n_, l_List] := b[n, l] = Module[{k, t}, Which[ n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n - t, l - t], True, For[k = 1, l[[k]] > 0, k++]; b[n, ReplacePart[l, k -> 1]] + If[n > 1, b[n, ReplacePart[l, k -> 2]], 0] + If[k < Length[l] && l[[k + 1]] == 0, b[n, ReplacePart[l, {k -> 1, k + 1 -> 1}]] + If[n > 1, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0], 0]]]; T[n_, k_] := b[Max[n, k], Array[0&, Min[n, k]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)
-
Maxima
/* See Maxima code link. */
Comments