cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052549 a(n) = 5*2^(n-1) - 1, n>0, with a(0)=1.

Original entry on oeis.org

1, 4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279, 2684354559
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A153894 is a better version of this sequence. - N. J. A. Sloane, Feb 07 2009
Equals binomial transform of [1, 3, 2, 3, 2, 3, 2, ...]. - Gary W. Adamson, May 11 2008

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 5*2^(n-1) -1)); # G. C. Greubel, May 07 2019
    
  • Magma
    [n eq 0 select 1 else 5*2^(n-1) -1: n in [0..30]]; // G. C. Greubel, May 07 2019
    
  • Maple
    spec := [S,{S=Prod(Sequence(Union(Z,Z)),Union(Z,Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    {1}~Join~Array[5*2^(# -1)-1 &,30] (* Michael De Vlieger, Jul 18 2018 *)
    LinearRecurrence[{3,-2}, {1,4,9}, 30] (* G. C. Greubel, May 07 2019 *)
  • PARI
    vector(30, n, n--; if(n==0, 1, 5*2^(n-1) -1)) \\ G. C. Greubel, May 07 2019
    
  • Python
    a052549 = [1] + [(5<<(n-1))-1 for n in range(1, 30)]
    print(a052549)  # Gennady Eremin, Sep 10 2023
  • Sage
    [1]+[5*2^(n-1) -1 for n in (1..30)] # G. C. Greubel, May 07 2019
    

Formula

G.f.: (1 + x - x^2)/((1-2*x)*(1-x)).
a(n) = 2*a(n-1) + 1, for n>1, with a(0)=1 and a(1)=4.
E.g.f.: (5*exp(2*x) - 2*exp(x) - 1)/2. - G. C. Greubel, May 07 2019
a(n) = 1 + A000225(n-1) + A000225(n+1) for n > 0. - Gennady Eremin, Sep 08 2023

Extensions

More terms from James Sellers, Jun 06 2000