A052549 a(n) = 5*2^(n-1) - 1, n>0, with a(0)=1.
1, 4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279, 2684354559
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 486
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
GAP
Concatenation([1], List([1..30], n-> 5*2^(n-1) -1)); # G. C. Greubel, May 07 2019
-
Magma
[n eq 0 select 1 else 5*2^(n-1) -1: n in [0..30]]; // G. C. Greubel, May 07 2019
-
Maple
spec := [S,{S=Prod(Sequence(Union(Z,Z)),Union(Z,Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
{1}~Join~Array[5*2^(# -1)-1 &,30] (* Michael De Vlieger, Jul 18 2018 *) LinearRecurrence[{3,-2}, {1,4,9}, 30] (* G. C. Greubel, May 07 2019 *)
-
PARI
vector(30, n, n--; if(n==0, 1, 5*2^(n-1) -1)) \\ G. C. Greubel, May 07 2019
-
Python
a052549 = [1] + [(5<<(n-1))-1 for n in range(1, 30)] print(a052549) # Gennady Eremin, Sep 10 2023
-
Sage
[1]+[5*2^(n-1) -1 for n in (1..30)] # G. C. Greubel, May 07 2019
Formula
G.f.: (1 + x - x^2)/((1-2*x)*(1-x)).
a(n) = 2*a(n-1) + 1, for n>1, with a(0)=1 and a(1)=4.
E.g.f.: (5*exp(2*x) - 2*exp(x) - 1)/2. - G. C. Greubel, May 07 2019
Extensions
More terms from James Sellers, Jun 06 2000
Comments