cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A081254 Numbers k such that A081252(m)/m^2 has a local maximum for m = k.

Original entry on oeis.org

1, 3, 6, 13, 26, 53, 106, 213, 426, 853, 1706, 3413, 6826, 13653, 27306, 54613, 109226, 218453, 436906, 873813, 1747626, 3495253, 6990506, 13981013, 27962026, 55924053, 111848106, 223696213, 447392426, 894784853, 1789569706, 3579139413
Offset: 1

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local maxima, lim_{m->inf} A081252(m)/m^2 = 1/10. For local minima cf. A081253.
Row sums of the triangle A181971. - Reinhard Zumkeller, Jul 09 2012

Examples

			13 is a term since A081252(12)/12^2 = 15/144 = 0.104..., A081252(13)/13^2 = 18/169 = 0.106..., A081252(14)/14^2 = 20/196 = 0.102....
		

Crossrefs

Programs

  • Magma
    [Floor(2^(n-1)*5/3): n in [1..40]]; // Vincenzo Librandi, Apr 04 2012
    
  • Maple
    seq(floor(2^(n-1)*5/3),n=1..35); # Muniru A Asiru, Sep 20 2018
  • Mathematica
    Rest@CoefficientList[Series[-(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)), {x, 0, 32}], x] (* Vincenzo Librandi, Apr 04 2012 *)
    a[n_]:=Floor[2^(n-1)*5/3]; Array[a,33,1] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = 2^(n-1)*5\3; \\ Altug Alkan, Sep 21 2018

Formula

a(n) = floor(2^(n-1)*5/3). [corrected by Michel Marcus, Sep 21 2018]
a(n) = a(n-2) + 5*2^(n-3) for n > 2;
a(n+2) - a(n) = A020714(n-1);
a(n) + a(n-1) = A052549(n-1) for n > 1;
a(2*n+1) = A020989(n); a(2n) = A072197(n-1);
a(n+1) - a(n) = A048573(n-1).
G.f.: -(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)).
a(n) = 5*2^(n-1)/3 + (-1)^n/6-1/2. a(n) = 2*a(n-1) + (1+(-1)^n)/2, a(1)=1. - Paul Barry, Mar 24 2003
a(2n) = 2*a(2*n-1) + 1, a(2*n+1) = 2*a(2*n), a(1)=1. a(n) = A000975(n-1) + 2^(n-1). - Philippe Deléham, Oct 15 2006
a(n) = A005578(n) + A000225(n-1). - Yuchun Ji, Sep 21 2018
a(n) - a(n-2) = 2 * (a(n-1) - a(n-3)), with a(0..2)=[1,3,6]. - Yuchun Ji, Mar 18 2020

A153894 a(n) = 5*2^n - 1.

Original entry on oeis.org

4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279, 2684354559
Offset: 0

Views

Author

Keywords

Comments

a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n + 1, where the string "{}" is used to represent the empty set and spaces are ignored. - Ely Golden, Nov 14 2019
a(n) converted to binary is 100 followed by n ones. - Alexandre Herrera, Oct 06 2023

Crossrefs

Programs

  • Magma
    [5*2^n-1: n in [0..30]]; // Vincenzo Librandi, Oct 28 2011
    
  • Mathematica
    a=4;lst={a};Do[a=a*2+1;AppendTo[lst,a],{n,5!}];lst
    LinearRecurrence[{3,-2},{4,9}, 25] (* or *) Table[5*2^n - 1, {n,0,25}] (* G. C. Greubel, Sep 01 2016 *)
  • PARI
    a(n)=5*2^n-1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 2*a(n-1) + 1, n>0.
a(n) = A052549(n+1).
G.f.: (4 - 3*x) / ( (2*x-1)*(x-1) ). - R. J. Mathar, Oct 22 2011
a(n) + a(n-1)^2 = A309779(n), a perfect square. - Vincenzo Librandi, Oct 28 2011
From G. C. Greubel, Sep 01 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
E.g.f.: 5*exp(2*x) - exp(x). (End)

Extensions

Edited by N. J. A. Sloane, Feb 07 2009
Definition corrected by Franklin T. Adams-Watters, Apr 22 2009

A250656 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

9, 16, 19, 25, 34, 39, 36, 53, 70, 79, 49, 76, 109, 142, 159, 64, 103, 156, 221, 286, 319, 81, 134, 211, 316, 445, 574, 639, 100, 169, 274, 427, 636, 893, 1150, 1279, 121, 208, 345, 554, 859, 1276, 1789, 2302, 2559, 144, 251, 424, 697, 1114, 1723, 2556, 3581
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Table starts
....9...16....25....36....49....64....81...100...121...144...169....196....225
...19...34....53....76...103...134...169...208...251...298...349....404....463
...39...70...109...156...211...274...345...424...511...606...709....820....939
...79..142...221...316...427...554...697...856..1031..1222..1429...1652...1891
..159..286...445...636...859..1114..1401..1720..2071..2454..2869...3316...3795
..319..574...893..1276..1723..2234..2809..3448..4151..4918..5749...6644...7603
..639.1150..1789..2556..3451..4474..5625..6904..8311..9846.11509..13300..15219
.1279.2302..3581..5116..6907..8954.11257.13816.16631.19702.23029..26612..30451
.2559.4606..7165.10236.13819.17914.22521.27640.33271.39414.46069..53236..60915
.5119.9214.14333.20476.27643.35834.45049.55288.66551.78838.92149.106484.121843

Examples

			Some solutions for n=4 k=4
..1..1..0..1..1....0..0..0..0..0....0..0..0..0..0....1..1..1..0..0
..0..0..0..1..1....1..1..1..1..1....1..1..1..1..1....0..0..0..0..0
..0..0..0..1..1....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
..0..0..0..1..1....0..0..0..0..0....1..1..1..1..1....1..1..1..1..1
..0..0..0..1..1....0..1..1..1..1....1..1..1..1..1....0..0..0..1..1
		

Crossrefs

Column 1 is A052549(n+1)
Column 2 is A176449
Column 3 is A156127(n+1)
Column 4 is A048487(n+2)
Row 1 is A000290(n+2)
Row 2 is A168244(n+3)

Formula

Empirical: T(n,k) = 2^(n-1)*k^2 + (5*2^(n-1)-1)*k + 2^(n+1)
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1) +(5*2^(n-1) -1) +2^(n+1)
k=2: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*4 +(5*2^(n-1) -1)*2 +2^(n+1)
k=3: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*9 +(5*2^(n-1) -1)*3 +2^(n+1)
k=4: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*16 +(5*2^(n-1) -1)*4 +2^(n+1)
k=5: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*25 +(5*2^(n-1) -1)*5 +2^(n+1)
k=6: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*36 +(5*2^(n-1) -1)*6 +2^(n+1)
k=7: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*49 +(5*2^(n-1) -1)*7 +2^(n+1)
Empirical for row n:
n=1: a(n) = 1*n^2 + 4*n + 4
n=2: a(n) = 2*n^2 + 9*n + 8
n=3: a(n) = 4*n^2 + 19*n + 16
n=4: a(n) = 8*n^2 + 39*n + 32
n=5: a(n) = 16*n^2 + 79*n + 64
n=6: a(n) = 32*n^2 + 159*n + 128
n=7: a(n) = 64*n^2 + 319*n + 256

A054135 a(n) = T(n,1), array T as in A054134.

Original entry on oeis.org

2, 4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, May 25 2025: (Start)
As Ely Golden noted in A153894, a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n - 1, where the string "{}" is used to represent the empty set and spaces are ignored. First examples:
0 = {};
1 = {0} = {{}};
2 = {0,1} = {{},{{}}};
3 = {0,1,2} = {{},{{}},{{},{{}}}};
4 = {0,1,2,3} = {{},{{}},{{},{{}}},{{},{{}},{{},{{}}}}}.
(End)

Crossrefs

Identical to A052549 and A153894 except for initial term.
Cf. A267524.

Programs

  • Python
    print([2]+[(5*2**(n-2) - 1) for n in range(2, 50)]) # Karl V. Keller, Jr., Jun 12 2022

Formula

For n > 2, a(n) = 10*A000225(n-3) + 9 = 10*(2^(n-3) - 1) + 9 = 10*2^(n-3) - 1. - Gerald McGarvey, Aug 25 2004
a(1)=1, a(n) = n + Sum_{i=1..n-1} a(i) for n > 1. - Gerald McGarvey, Sep 06 2004
a(n) = 5*2^(n-2) - 1 for n > 1. - Karl V. Keller, Jr., Jun 12 2022

A133601 A007318 * (A097806 + A133080 - I), I = Identity matrix.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 7, 6, 5, 1, 9, 10, 14, 5, 1, 11, 15, 30, 15, 7, 1, 13, 21, 55, 35, 27, 7, 1, 15, 28, 91, 70, 77, 28, 9, 1, 17, 36, 140, 126, 182, 84, 44, 9, 1, 19, 45, 204, 210, 378, 210, 156, 45, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Examples

			First few rows of the triangle are:
1;
3, 1;
5, 3, 1;
7, 6, 5, 1;
9, 10, 14, 5, 1;
11, 15, 30, 15, 7, 1;
13, 21, 55, 35, 27, 7, 1;
15, 28, 91, 70, 77, 28, 9, 1;
...
		

Crossrefs

Cf. A097806, A133080, A052549 (row sums).

Programs

Formula

A007318 * (A097806 + A133080 - I), I = Identity matrix. Binomial transform of an infinite lower triangular matrix with (1,1,1,...) in the main diagonal and (2,1,2,1,2,...) in the subdiagonal; and the rest zeros.

A052617 E.g.f. (1+x-x^2)/((1-x)(1-2x)).

Original entry on oeis.org

1, 4, 18, 114, 936, 9480, 114480, 1607760, 25764480, 464123520, 9286099200, 204334099200, 4904497382400, 127523158963200, 3570735629260800, 107123376552192000, 3427968972460032000, 116551300751069184000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Prod(Union(Z,Sequence(Z)),Sequence(Union(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1+x-x^2)/((1-x)(1-2x)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 25 2018 *)

Formula

E.g.f.: -(-x+x^2-1)/(-1+2*x)/(-1+x)
Recurrence: {a(0)=1, a(1)=4, (2*n^2+6*n+4)*a(n) +(-6-3*n)*a(n+1) +a(n+2)=0, a(2)=18}
(-1+5*2^(n-1))*n!, n>0.
a(n)=n!*A052549(n). - R. J. Mathar, Jun 03 2022

A140183 Triangle read by rows, binomial transform of an infinite lower triangular matrix with (1,2,1,2,1,2,...) in the main diagonal, (1,1,1,...) in the subdiagonal and the rest zeros.

Original entry on oeis.org

1, 2, 2, 3, 5, 1, 4, 9, 4, 2, 5, 14, 10, 9, 1, 6, 20, 20, 25, 6, 2, 7, 27, 35, 55, 21, 13, 1, 8, 35, 56, 105, 56, 49, 8, 2, 9, 44, 84, 182, 126, 140, 36, 17, 1, 10, 54, 120, 294, 252, 336, 120, 81, 10, 2, 1, 65, 165, 450, 462, 714, 330, 285, 55, 21, 1
Offset: 0

Views

Author

Gary W. Adamson, May 11 2008

Keywords

Comments

Row sums = A052549: (1, 4, 9, 19, 39, 79,...).

Examples

			First few rows of the triangle are:
1;
2, 2;
3, 5, 1;
4, 9, 4, 2;
5, 14, 10, 9, 1;
6, 20, 20, 25, 6, 2;
7, 27, 35, 55, 21, 13, 1;
...
		

Crossrefs

Cf. A052549.

Formula

Triangle read by rows, A007318 as an infinite lower triangular matrix * a bidiagonal matrix with (1,2,1,2,1,2,...) in the main diagonal and (1,1,1,...) in the subdiagonal.

A141499 a(0)=0; a(1)=1; a(n) = triangular number at index 5*2^(n-2)-1.

Original entry on oeis.org

0, 1, 10, 45, 190, 780, 3160, 12720, 51040, 204480, 818560, 3275520, 13104640, 52423680, 209704960, 838840320, 3355402240, 13421690880, 53686927360, 214748037120, 858992803840, 3435972526080, 13743892725760, 54975576145920, 219902315069440, 879609281249280
Offset: 0

Views

Author

Roger L. Bagula, Aug 10 2008

Keywords

Comments

The sequence a(n)=b(n)*(b(n)-1)/2 gives an SO(2),SO(5),SO(10),SO(20), ...

Crossrefs

Cf. A084215.

Programs

  • Mathematica
    Clear[a] a[0] = 1; a[1] = 2; a[2] = 5; a[n_] := a[n] = a[1]*a[n - 1]; Table[a[n]*(a[n] - 1)/2, {n, 0, 20}]
    Join[{0,1},LinearRecurrence[{6,-8},{10,45},30]] (* Harvey P. Dale, May 23 2013 *)

Formula

a(0)=0. a(n)=A000217(A052549(n-1)), n>0. - R. J. Mathar, Oct 29 2008
a(n)=5*2^(-5+n)*(-4+5*2^n) for n>1. a(n)=6*a(n-1)-8*a(n-2) for n>3. G.f.: x*(1+4*x-7*x^2)/((1-2*x)*(1-4*x)). [Colin Barker, Aug 16 2012]

Extensions

Edited by N. J. A. Sloane, Aug 16 2008
Corrected the definition, which was describing an auxiliary sequence. - R. J. Mathar, Oct 29 2008
More terms from Harvey P. Dale, May 23 2013
Showing 1-8 of 8 results.