cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A036044 BCR(n): write in binary, complement, reverse.

Original entry on oeis.org

1, 0, 2, 0, 6, 2, 4, 0, 14, 6, 10, 2, 12, 4, 8, 0, 30, 14, 22, 6, 26, 10, 18, 2, 28, 12, 20, 4, 24, 8, 16, 0, 62, 30, 46, 14, 54, 22, 38, 6, 58, 26, 42, 10, 50, 18, 34, 2, 60, 28, 44, 12, 52, 20, 36, 4, 56, 24, 40, 8, 48, 16, 32, 0, 126, 62, 94, 30, 110, 46, 78, 14, 118, 54, 86
Offset: 0

Views

Author

Keywords

Comments

a(0) could be considered to be 0 if the binary representation of zero were chosen to be the empty string. - Jason Kimberley, Sep 19 2011
From Bernard Schott, Jun 15 2021: (Start)
Except for a(0) = 1, every term is even.
For each q >= 0, there is one and only one odd number h such that a(n) = 2*q iff n = h*2^m-1 for m >= 1 when q = 0, and for m >= 0 when q >= 1 (see A345401 and some examples below).
a(n) = 0 iff n = 2^m-1 for m >= 1 (Mersenne numbers) (A000225).
a(n) = 2 iff n = 3*2^m-1 for m >= 0 (A153893).
a(n) = 4 iff n = 7*2^m-1 for m >= 0 (A086224).
a(n) = 6 iff n = 5*2^m-1 for m >= 0 (A153894).
a(n) = 8 iff n = 15*2^m-1 for m >= 0 (A196305).
a(n) = 10 iff n = 11*2^m-1 for m >= 0 (A086225).
a(n) = 12 iff n = 13*2^m-1 for m >= 0 (A198274).
For k >= 1, a(n) = 2^k iff n = (2^(k+1)-1)*2^m - 1 for m >= 0.
Explanation for a(n) = 2:
For m >= 0, A153893(m) = 3*2^m-1 -> 1011...11 -> 0100...00 -> 10 -> 2 where 1011...11_2 is 10 followed by m 1's. (End)

Examples

			4 -> 100 -> 011 -> 110 -> 6.
		

Crossrefs

Cf. A035928 (fixed points), A195063, A195064, A195065, A195066.
Indices of terms 0, 2, 4, 6, 8, 10, 12, 14, 18, 22, 26, 30: A000225 \ {0}, A153893, A086224, A153894, A196305, A086225, A198274, A052996\{1,3}, A291557, A198276, A171389, A198275.

Programs

  • Haskell
    import Data.List (unfoldr)
    a036044 0 = 1
    a036044 n = foldl (\v d -> 2 * v + d) 0 (unfoldr bc n) where
       bc 0 = Nothing
       bc x = Just (1 - m, x') where (x',m) = divMod x 2
    -- Reinhard Zumkeller, Sep 16 2011
    
  • Magma
    A036044:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    A036044 := proc(n)
        local bcr ;
        if n = 0 then
            return 1;
        end if;
        convert(n,base,2) ;
        bcr := [seq(1-i,i=%)] ;
        add(op(-k,bcr)*2^(k-1),k=1..nops(bcr)) ;
    end proc:
    seq(A036044(n),n=0..200) ; # R. J. Mathar, Nov 06 2017
  • Mathematica
    dtn[ L_ ] := Fold[ 2#1+#2&, 0, L ]; f[ n_ ] := dtn[ Reverse[ 1-IntegerDigits[ n, 2 ] ] ]; Table[ f[ n ], {n, 0, 100} ]
    Table[FromDigits[Reverse[IntegerDigits[n,2]/.{1->0,0->1}],2],{n,0,80}] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    a(n)=fromdigits(Vecrev(apply(n->1-n,binary(n))),2) \\ Charles R Greathouse IV, Apr 22 2015
    
  • Python
    def comp(s): z, o = ord('0'), ord('1'); return s.translate({z:o, o:z})
    def BCR(n): return int(comp(bin(n)[2:])[::-1], 2)
    print([BCR(n) for n in range(75)]) # Michael S. Branicky, Jun 14 2021
    
  • Python
    def A036044(n): return -int((s:=bin(n)[-1:1:-1]),2)-1+2**len(s) # Chai Wah Wu, Feb 04 2022

Formula

a(2n) = 2*A059894(n), a(2n+1) = a(2n) - 2^floor(log_2(n)+1). - Ralf Stephan, Aug 21 2003
Conjecture: a(n) = (-1)^A023416(n)*b(n) for n > 0 with a(0) = 1 where b(2^m) = (-1)^m*(2^(m+1) - 2) for m >= 0, b(2n+1) = b(n) for n > 0, b(2n) = b(n) + b(n - 2^f(n)) + b(2n - 2^f(n)) for n > 0 and where f(n) = A007814(n) (see A329369). - Mikhail Kurkov, Dec 13 2024

A086224 a(n) = 7*2^n - 1.

Original entry on oeis.org

6, 13, 27, 55, 111, 223, 447, 895, 1791, 3583, 7167, 14335, 28671, 57343, 114687, 229375, 458751, 917503, 1835007, 3670015, 7340031, 14680063, 29360127, 58720255, 117440511, 234881023, 469762047, 939524095, 1879048191, 3758096383, 7516192767, 15032385535, 30064771071
Offset: 0

Views

Author

Marco Matosic, Jul 27 2003

Keywords

Comments

a(n) = A164874(n+2,2); subsequence of A030130. - Reinhard Zumkeller, Aug 29 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-5). - Milan Janjic, Jan 27 2010

Crossrefs

Other sequences with recurrence a(n+1) = 2*a(n) + 1 are:
a(0) = 2 gives A153893, a(0)=3 essentially A126646.
a(0) = 4 gives A153894, a(0)=5 essentially A153893.
a(0) = 7 gives essentially A000225.
a(0) = 8 gives A052996 except for some initial terms,
a(0) = 9 is essentially A153894.
a(0) = 10 gives A086225,
a(0) = 11 is essentially A153893.
a(0) = 13 is essentially A086224.

Programs

  • Mathematica
    7*2^Range[0,30]-1 (* Harvey P. Dale, May 09 2018 *)
  • PARI
    a(n)=7<Charles R Greathouse IV, Sep 24 2015

Formula

a(n+1) = 2*a(n) + 1.
G.f.: (6-5*x)/((1-x)*(1-2*x)). - Jaume Oliver Lafont, Sep 14 2009
a(n-1)^2 + a(n) = (7*2^(n-1))^2. - Vincenzo Librandi, Aug 08 2010
a(n) = (A052940(n+1) + A000225(n+3))/2. - Gennady Eremin, Aug 31 2023
From Elmo R. Oliveira, Apr 22 2025: (Start)
E.g.f.: exp(x)*(7*exp(x) - 1).
a(n) = 3*a(n-1) - 2*a(n-2). (End)

Extensions

More terms from David Wasserman, Feb 22 2005

A052549 a(n) = 5*2^(n-1) - 1, n>0, with a(0)=1.

Original entry on oeis.org

1, 4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279, 2684354559
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A153894 is a better version of this sequence. - N. J. A. Sloane, Feb 07 2009
Equals binomial transform of [1, 3, 2, 3, 2, 3, 2, ...]. - Gary W. Adamson, May 11 2008

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 5*2^(n-1) -1)); # G. C. Greubel, May 07 2019
    
  • Magma
    [n eq 0 select 1 else 5*2^(n-1) -1: n in [0..30]]; // G. C. Greubel, May 07 2019
    
  • Maple
    spec := [S,{S=Prod(Sequence(Union(Z,Z)),Union(Z,Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    {1}~Join~Array[5*2^(# -1)-1 &,30] (* Michael De Vlieger, Jul 18 2018 *)
    LinearRecurrence[{3,-2}, {1,4,9}, 30] (* G. C. Greubel, May 07 2019 *)
  • PARI
    vector(30, n, n--; if(n==0, 1, 5*2^(n-1) -1)) \\ G. C. Greubel, May 07 2019
    
  • Python
    a052549 = [1] + [(5<<(n-1))-1 for n in range(1, 30)]
    print(a052549)  # Gennady Eremin, Sep 10 2023
  • Sage
    [1]+[5*2^(n-1) -1 for n in (1..30)] # G. C. Greubel, May 07 2019
    

Formula

G.f.: (1 + x - x^2)/((1-2*x)*(1-x)).
a(n) = 2*a(n-1) + 1, for n>1, with a(0)=1 and a(1)=4.
E.g.f.: (5*exp(2*x) - 2*exp(x) - 1)/2. - G. C. Greubel, May 07 2019
a(n) = 1 + A000225(n-1) + A000225(n+1) for n > 0. - Gennady Eremin, Sep 08 2023

Extensions

More terms from James Sellers, Jun 06 2000

A075300 Array A read by antidiagonals upwards: A(n, k) = array A054582(n,k) - 1 = 2^n*(2*k+1) - 1 with n,k >= 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 7, 11, 9, 6, 15, 23, 19, 13, 8, 31, 47, 39, 27, 17, 10, 63, 95, 79, 55, 35, 21, 12, 127, 191, 159, 111, 71, 43, 25, 14, 255, 383, 319, 223, 143, 87, 51, 29, 16, 511, 767, 639, 447, 287, 175, 103, 59, 33, 18, 1023, 1535, 1279, 895, 575, 351, 207, 119
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2002

Keywords

Comments

From Philippe Deléham, Feb 19 2014: (Start)
A(0,k) = 2*k = A005843(k),
A(1,k) = 4*k + 1 = A016813(k),
A(2,k) = 8*k + 3 = A017101(k),
A(n,0) = A000225(n),
A(n,1) = A153893(n),
A(n,2) = A153894(n),
A(n,3) = A086224(n),
A(n,4) = A052996(n+2),
A(n,5) = A086225(n),
A(n,6) = A198274(n),
A(n,7) = A238087(n),
A(n,8) = A198275(n),
A(n,9) = A198276(n),
A(n,10) = A171389(n). (End)
A permutation of the nonnegative integers. - Alzhekeyev Ascar M, Jun 05 2016
The values in array row n, when expressed in binary, have n trailing 1-bits. - Ruud H.G. van Tol, Mar 18 2025

Examples

			The array A begins:
   0    2    4    6    8   10   12   14   16   18 ...
   1    5    9   13   17   21   25   29   33   37 ...
   3   11   19   27   35   43   51   59   67   75 ...
   7   23   39   55   71   87  103  119  135  151 ...
  15   47   79  111  143  175  207  239  271  303 ...
  31   95  159  223  287  351  415  479  543  607 ...
  ... - _Philippe Deléham_, Feb 19 2014
From _Wolfdieter Lang_, Jan 31 2019: (Start)
The triangle T begins:
   n\k   0    1    2   3   4   5   6   7  8  9 10 ...
   0:    0
   1:    1    2
   2:    3    5    4
   3:    7   11    9   6
   4:   15   23   19  13   8
   5    31   47   39  27  17  10
   6:   63   95   79  55  35  21  12
   7:  127  191  159 111  71  43  25  14
   8:  255  383  319 223 143  87  51  29 16
   9:  511  767  639 447 287 175 103  59 33 18
  10: 1023 1535 1279 895 575 351 207 119 67 37 20
  ...
T(3, 1) = 2^2*(2*1+1) - 1 = 12 - 1 = 11.  (End)
		

Crossrefs

Inverse permutation: A075301. Transpose: A075302. The X-projection is given by A007814(n+1) and the Y-projection A025480.

Programs

  • Maple
    A075300bi := (x,y) -> (2^x * (2*y + 1))-1;
    A075300 := n -> A075300bi(A025581(n), A002262(n));
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
    A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
  • Mathematica
    Table[(2^# (2 k + 1)) - 1 &[m - k], {m, 0, 10}, {k, 0, m}] (* Michael De Vlieger, Jun 05 2016 *)

Formula

From Wolfdieter Lang, Jan 31 2019: (Start)
Array A(n, k) = 2^n*(2*k+1) - 1, for n >= 0 and m >= 0.
The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1) - 1, n >= 0, k=0..n.
See also A054582 after subtracting 1. (End)
From Ruud H.G. van Tol, Mar 17 2025: (Start)
A(0, k) is even. For n > 0, A(n, k) is odd and (3 * A(n, k) + 1) / 2 = A(n-1, 3*k+1).
A(n, k) = 2^n - 1 (mod 2^(n+1)) (equivalent to the comment about trailing 1-bits). (End)

A051633 a(n) = 5*2^n - 2.

Original entry on oeis.org

3, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558, 5368709118, 10737418238, 21474836478
Offset: 0

Views

Author

Keywords

Examples

			a(5) = 5*2^4 - 2 = 80 - 2 = 78.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -2},{3, 8},30] (* Ray Chandler, Jul 18 2020 *)

Formula

a(n) = A118654(n, 5).
a(n) = A000079(n)*5 - 2 = A020714(n) - 2. - Omar E. Pol, Dec 23 2008
a(n) = 2*(a(n-1)+1) with a(0)=3. - Vincenzo Librandi, Aug 06 2010
a(n) = A123208(2*n+1) = A048487(n)+2 = A131051(n+2) = A153894(n)-1. - Philippe Deléham, Apr 15 2013
G.f.: ( 3-x ) / ( (2*x-1)*(x-1) ). - R. J. Mathar, Mar 23 2023
E.g.f.: exp(x)*(5*exp(x) - 2). - Stefano Spezia, Oct 03 2023

A066884 Square array read by upward antidiagonals where the n-th row contains the positive integers with n binary 1's.

Original entry on oeis.org

1, 3, 2, 7, 5, 4, 15, 11, 6, 8, 31, 23, 13, 9, 16, 63, 47, 27, 14, 10, 32, 127, 95, 55, 29, 19, 12, 64, 255, 191, 111, 59, 30, 21, 17, 128, 511, 383, 223, 119, 61, 39, 22, 18, 256, 1023, 767, 447, 239, 123, 62, 43, 25, 20, 512, 2047, 1535, 895, 479, 247, 125, 79, 45, 26, 24, 1024
Offset: 1

Views

Author

Jared Benjamin Ricks (jaredricks(AT)yahoo.com), Jan 21 2002

Keywords

Comments

This is a permutation of the positive integers; the inverse permutation is A067587.

Examples

			Column: 1   2   3   4   5   6
-----------------------------
Row 1:| 1   2   4   8  16  32
Row 2:| 3   5   6   9  10  12
Row 3:| 7  11  13  14  19  21
Row 4:|15  23  27  29  30  39
Row 5:|31  47  55  59  61  62
Row 6:|63  95 111 119 123 125
		

Crossrefs

Selected rows: A000079 (1), A018900 (2), A014311 (3), A014312 (4), A014313 (5), A023688 (6), A023689 (7), A023690 (8), A023691 (9), A038461 (10), A038462 (11), A038463 (12). For decimal analogs, see A011557 and A038444-A038452.
Selected columns: A000225 (1), A055010 (2).
Selected diagonals: A036563 (main), A000918 (1st upper), A153894 (2nd upper). [Franklin T. Adams-Watters, Apr 22 2009]
Cf. A067576 (the same array read by downward antidiagonals).
Antidiagonal sums give A361074.

Programs

  • Mathematica
    a = {}; Do[ a = Append[a, Last[ Take[ Take[ Select[ Range[2^12], Count[ IntegerDigits[ #, 2], 1] == j - i + 1 & ], j], i]]], {j, 1, 11}, {i, 1, j}]; a

Extensions

Corrected and extended by Henry Bottomley, Jan 27 2002

A357773 Odd numbers with two zeros in their binary expansion.

Original entry on oeis.org

9, 19, 21, 25, 39, 43, 45, 51, 53, 57, 79, 87, 91, 93, 103, 107, 109, 115, 117, 121, 159, 175, 183, 187, 189, 207, 215, 219, 221, 231, 235, 237, 243, 245, 249, 319, 351, 367, 375, 379, 381, 415, 431, 439, 443, 445, 463, 471, 475, 477, 487, 491, 493, 499, 501
Offset: 1

Views

Author

Bernard Schott, Oct 12 2022

Keywords

Comments

A048490 \ {1} is a subsequence, since for m >= 1, A048490(m) = 8*2^m - 7 has 11..11001 with m starting 1 for binary expansion.
A153894 \ {4} is a subsequence, since for m >= 1, A153894(m) = 5*2^m - 1 has 10011..11 with m trailing 1 for binary expansion.
A220236 is a subsequence, since for m >= 1, A220236(m) = 2^(2*m + 2) - 2^(m + 1) - 2^m - 1 has 11..110011..11 with m starting 1 and m trailing 1 for binary expansion.
For k > 2, there are (k-1)*(k-2)/2 terms between 2^k and 2^(k+1), or equivalently (k-1)*(k-2)/2 terms with k+1 bits.
Binary expansion of a(n) is A357774(n).
{4*a(n), n>0} form a subsequence of A353654 (numbers with two trailing 0 bits and two other 0 bits).

Crossrefs

Odd numbers with k zeros in their binary expansion: A000225 (k=0), A190620 (k=1).
Subsequences: A048490 \ {1}, A153894 \ {4}, A220236.

Programs

  • Maple
    seq(seq(seq(2^n-1-2^i-2^j,j=i-1..1,-1),i=n-2..1,-1),n=4..10); # Robert Israel, Oct 13 2022
  • Mathematica
    Select[Range[1, 500, 2], DigitCount[#, 2, 0] == 2 &] (* Amiram Eldar, Oct 12 2022 *)
  • PARI
    isok(k) = (k%2) && (#binary(k) == hammingweight(k)+2); \\ Michel Marcus, Oct 13 2022
    
  • PARI
    list(lim)=my(v=List()); for(n=4,logint(lim\=1,2)+1, my(N=2^n-1); forstep(a=n-2,2,-1, my(A=N-1<lim, break(2)); listput(v,t)))); Vec(v) \\ Charles R Greathouse IV, Oct 21 2022
  • Python
    def a(n):
        m = 0
        while m*(m+1)*(m+2)//6 <= n: m += 1
        m -= 1 # m = A056556(n-1)
        k, r, j = m + 4, n - m*(m+1)*(m+2)//6, 0
        while r >= 0: r -= (m+1-j); j += 1
        j += 1
        return 2**k - 2**(k-j) - 2**(-r) - 1
    print([a(n) for n in range(60)]) # Michael S. Branicky, Oct 12 2022
    
  • Python
    # faster version for generating initial segment of sequence
    from itertools import combinations, count, islice
    def agen():
        for d in count(4):
            b, c = 2**d - 1, 2**(d-1)
            for i, j in combinations(range(1, d-1), 2):
                yield b - (c >> i) - (c >> j)
    print(list(islice(agen(), 60))) # Michael S. Branicky, Oct 13 2022
    
  • Python
    from math import comb, isqrt
    from sympy import integer_nthroot
    def A357773(n):
        a = (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2,3))+3
        b = isqrt((j:=comb(a-1,3)-n+1)<<3)+3>>1
        c = j-comb((r:=isqrt(w:=j<<1))+(w>r*(r+1)),2)
        return (1<Chai Wah Wu, Dec 17 2024
    

Formula

A023416(a(n)) = 2.
a((n-1)*(n-2)*(n-3)/6 - (i-1)*(i-2)/2 - (j-1)) = 2^n - 2^i - 2^j - 1 for 1 <= j < i <= n-2. - Robert Israel, Oct 13 2022

Extensions

a(11) and beyond from Michael S. Branicky, Oct 12 2022

A365801 Numbers k such that A163511(k) is a cube.

Original entry on oeis.org

0, 4, 9, 19, 32, 39, 65, 72, 79, 131, 145, 152, 159, 256, 263, 291, 305, 312, 319, 513, 520, 527, 576, 583, 611, 625, 632, 639, 1027, 1041, 1048, 1055, 1153, 1160, 1167, 1216, 1223, 1251, 1265, 1272, 1279, 2048, 2055, 2083, 2097, 2104, 2111, 2307, 2321, 2328, 2335, 2433, 2440, 2447, 2496, 2503, 2531, 2545, 2552
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2023

Keywords

Comments

The sequence is defined inductively as:
(a) it contains 0 and 4,
and
(b) for any nonzero term a(n), (2*a(n)) + 1 and 8*a(n) are also included as terms.
Because the inductive definition guarantees that all terms after 0 are of the form 7k+2, 7k+4 or 7k+5 (A047378), and because for any n >= 0, n^3 == 0, 1 or 6 (mod 7), (i.e., cubes are in A047275), it follows that there are no cubes in this sequence after the initial 0.

Crossrefs

Positions of multiples of 3 in A365805.
Sequence A243071(n^3), n >= 1, sorted into ascending order.
Subsequence of A047378 (after the initial 0).
Subsequences: A013731, A153894.
Cf. also A365802, A365808.

Programs

  • PARI
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    isA365801(n) = ispower(A163511(n),3);
    
  • PARI
    isA365801(n) = if(n<=4, !(n%4), if(n%2, isA365801((n-1)/2), if(n%8, 0, isA365801(n/8))));

A246347 Record values in A135141.

Original entry on oeis.org

1, 2, 4, 8, 9, 17, 19, 35, 39, 71, 79, 143, 159, 287, 319, 575, 639, 1151, 1279, 2303, 2559, 4607, 5119, 9215, 10239, 18431, 20479, 36863, 40959, 73727, 81919, 147455, 163839, 294911, 327679, 589823, 655359, 1179647, 1310719, 2359295, 2621439, 4718591, 5242879, 9437183, 10485759
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2014 after Robert G. Wilson v's note in A135141

Keywords

Comments

In binary, the terms of the sequence seem to follow a simple pattern:
1 = a(1)
10 = a(2)
100 = a(3)
1000 = a(4)
1001 = a(5)
10001 = a(6)
10011 = a(7)
100011 = a(8)
100111 = a(9)
1000111 = a(10)
1001111 = a(11)
10001111 = a(12)
10011111 = a(13)
100011111 = a(14)
100111111 = a(15)
...
thus the sequence seems to consist of, after 1 and 2, an interleaving of sequence A153894: 4, 9, 19, 39, 79, 159, 319, ... with the sequence A052996 from its third term onward: 8, 17, 35, 71, 143, ...

Crossrefs

A246346 gives the corresponding positions in A135141.

Programs

  • Mathematica
    Union[FromDigits[#,2]&/@Flatten[Table[{PadRight[{1,0,0},n,1],PadRight[ {1,0,0,0},n,1]},{n,30}],1]] (* Harvey P. Dale, May 03 2015 *)
  • PARI
    \\ See code in A246348.
    
  • Scheme
    (define (A246347 n) (A135141 (A246346 n)))

Formula

a(n) = A135141(A246346(n)).

A354146 Even numbers in A353730 in order of appearance.

Original entry on oeis.org

2, 4, 8, 16, 26, 32, 64, 128, 206, 256, 454, 446, 512, 1024, 2048, 3142
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2022

Keywords

Comments

A090252(1535) = 256 and A090252(3071) = 478 are also even terms in A090252; the latter breaks the correspondence with this sequence. - Michael S. Branicky, May 21 2022

Crossrefs

Extensions

Deleted an incorrect comment. - N. J. A. Sloane, May 25 2022
Showing 1-10 of 16 results. Next