cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A293881 Number T(n,k) of linear chord diagrams having n chords and minimal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 10, 4, 1, 0, 69, 26, 9, 1, 0, 616, 230, 79, 19, 1, 0, 6740, 2509, 854, 252, 39, 1, 0, 87291, 32422, 11105, 3441, 796, 79, 1, 0, 1305710, 484180, 167273, 52938, 14296, 2468, 159, 1, 0, 22149226, 8203519, 2855096, 919077, 265103, 59520, 7564, 319, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2017

Keywords

Comments

Conjecture: column k>0 is asymptotic to (exp(-k+1) - exp(-k)) * 2^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Oct 25 2017

Examples

			Triangle T(n,k) begins:
  1;
  0,       1;
  0,       2,      1;
  0,      10,      4,      1;
  0,      69,     26,      9,     1;
  0,     616,    230,     79,    19,     1;
  0,    6740,   2509,    854,   252,    39,    1;
  0,   87291,  32422,  11105,  3441,   796,   79,   1;
  0, 1305710, 484180, 167273, 52938, 14296, 2468, 159,  1;
  ...
		

Crossrefs

Row sums give A001147.
T(2n,n) gives A290688.
Main diagonal and first lower diagonal give: A000012, A054135 (for n>0).

A267524 Binary representation of the middle column of the "Rule 139" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 100, 1001, 10011, 100111, 1001111, 10011111, 100111111, 1001111111, 10011111111, 100111111111, 1001111111111, 10011111111111, 100111111111111, 1001111111111111, 10011111111111111, 100111111111111111, 1001111111111111111, 10011111111111111111
Offset: 0

Views

Author

Robert Price, Jan 16 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=139; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)

Formula

Conjectures from Colin Barker, Jan 16 2016 and Apr 19 2019: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 3. [n range correction - Karl V. Keller, Jr., Apr 08 2022]
G.f.: (1-x+x^3) / ((1-x)*(1-10*x)).
(End)
Showing 1-2 of 2 results.