cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357774 Binary expansions of odd numbers with two zeros in their binary expansion.

Original entry on oeis.org

1001, 10011, 10101, 11001, 100111, 101011, 101101, 110011, 110101, 111001, 1001111, 1010111, 1011011, 1011101, 1100111, 1101011, 1101101, 1110011, 1110101, 1111001, 10011111, 10101111, 10110111, 10111011, 10111101, 11001111, 11010111, 11011011, 11011101, 11100111, 11101011
Offset: 1

Views

Author

Bernard Schott, Oct 19 2022

Keywords

Comments

For m >= 4, there are A000217(m-3) terms with m digits.

Crossrefs

A267524 \ {1, 10, 100} and A267705 \ {1, 10} are two subsequences.
Similar, but with k zeros in their binary expansion: A000042 (k=0), A190619 (k=1).

Programs

  • Mathematica
    FromDigits[IntegerDigits[#, 2]] & /@ Select[Range[1, 250, 2], DigitCount[#, 2, 0] == 2 &] (* Amiram Eldar, Oct 19 2022 *)
  • PARI
    isok(k) = (k%2) && (#binary(k) == hammingweight(k)+2); \\ A357773
    f(n) = fromdigits(binary(n), 10); \\ A007088
    lista(nn) = apply(f, select(isok, [1..nn])); \\ Michel Marcus, Oct 19 2022
  • Python
    from itertools import combinations, count, islice
    def agen(): # generator of terms
        for d in count(4):
            b, c = 2**d - 1, 2**(d-1)
            for i, j in combinations(range(1, d-1), 2):
                yield int(bin(b - (c >> i) - (c >> j))[2:])
    print(list(islice(agen(), 30))) # Michael S. Branicky, Oct 19 2022
    
  • Python
    from itertools import count, islice
    def A357774_gen(): # generator of terms
        for l in count(2):
            m = (10**(l+2)-1)//9
            for i in range(l,0,-1):
                k = m-10**i
                yield from (k-10**j for j in range(i-1,0,-1))
    A357774_list = list(islice(A357774_gen(),30)) # Chai Wah Wu, Feb 19 2023
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A357774(n):
        a = (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2,3))+3
        b = isqrt((j:=comb(a-1,3)-n+1)<<3)+3>>1
        c = j-comb((r:=isqrt(w:=j<<1))+(w>r*(r+1)),2)
        return (10**a-1)//9-10**b-10**c # Chai Wah Wu, Dec 19 2024
    

Formula

a(n) = A007088(A357773(n)).

A054135 a(n) = T(n,1), array T as in A054134.

Original entry on oeis.org

2, 4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, May 25 2025: (Start)
As Ely Golden noted in A153894, a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n - 1, where the string "{}" is used to represent the empty set and spaces are ignored. First examples:
0 = {};
1 = {0} = {{}};
2 = {0,1} = {{},{{}}};
3 = {0,1,2} = {{},{{}},{{},{{}}}};
4 = {0,1,2,3} = {{},{{}},{{},{{}}},{{},{{}},{{},{{}}}}}.
(End)

Crossrefs

Identical to A052549 and A153894 except for initial term.
Cf. A267524.

Programs

  • Python
    print([2]+[(5*2**(n-2) - 1) for n in range(2, 50)]) # Karl V. Keller, Jr., Jun 12 2022

Formula

For n > 2, a(n) = 10*A000225(n-3) + 9 = 10*(2^(n-3) - 1) + 9 = 10*2^(n-3) - 1. - Gerald McGarvey, Aug 25 2004
a(1)=1, a(n) = n + Sum_{i=1..n-1} a(i) for n > 1. - Gerald McGarvey, Sep 06 2004
a(n) = 5*2^(n-2) - 1 for n > 1. - Karl V. Keller, Jr., Jun 12 2022
Showing 1-2 of 2 results.