cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052553 Square array of binomial coefficients T(n,k) = binomial(n,k), n >= 0, k >= 0, read by upward antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 0, 0, 1, 6, 10, 4, 0, 0, 0, 0, 1, 7, 15, 10, 1, 0, 0, 0, 0, 1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, 1, 10, 36, 56, 35, 6, 0, 0, 0, 0, 0, 0, 1, 11, 45, 84, 70, 21, 1, 0, 0, 0, 0, 0, 0, 1, 12, 55
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2000

Keywords

Comments

Another version of Pascal's triangle A007318.
As a triangle read by rows, it is (1,0,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938 and it is the Riordan array (1/(1-x), x^2/(1-x)). The row sums of this triangle are F(n+1) = A000045(n+1). - Philippe Deléham, Dec 11 2011
As a triangle, binomial(n-k, k) is also the number of ways to add k pierced circles to a path graph P_n so that no two circles share a vertex (see Lemma 3.1 at page 5 in Owad and Tsvietkova). - Stefano Spezia, May 18 2022
For all n >= 0, k >= 0, the k-th homology group of the n-torus H_k(T^n) is the free abelian group of rank T(n,k) = binomial(n,k). See the Math Stack Exchange link below. - Jianing Song, Mar 13 2023

Examples

			Array begins:
  1, 0,  0,  0, 0, 0, ...
  1, 1,  0,  0, 0, 0, ...
  1, 2,  1,  0, 0, 0, ...
  1, 3,  3,  1, 0, 0, ...
  1, 4,  6,  4, 1, 0, ...
  1, 5, 10, 10, 5, 1, ...
As a triangle, this begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  0, 0;
  1, 3,  1, 0, 0;
  1, 4,  3, 0, 0, 0;
  1, 5,  6, 1, 0, 0, 0;
  1, 6, 10, 4, 0, 0, 0, 0;
  ...
		

Crossrefs

The official entry for Pascal's triangle is A007318. See also A026729 (the same array read by downward antidiagonals).
As a triangle without zeros: A011973.

Programs

  • Magma
    /* As triangle */ [[Binomial(n-k,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 08 2017
  • Maple
    with(combinat): for s from 0 to 20 do for n from s to 0 by -1 do printf(`%d,`, binomial(n, s-n)) od:od: # James Sellers, Mar 17 2000
  • Mathematica
    Flatten[ Table[ Binomial[n-k , k], {n, 0, 13}, {k, 0, n}]]  (* Jean-François Alcover, Dec 05 2012 *)
  • PARI
    T(n,k) = binomial(n,k) \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

As a triangle: T(n,k) = A026729(n,n-k).
G.f. of the triangular version: 1/(1-x-x^2*y). - R. J. Mathar, Aug 11 2015