A052553 Square array of binomial coefficients T(n,k) = binomial(n,k), n >= 0, k >= 0, read by upward antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 0, 0, 1, 6, 10, 4, 0, 0, 0, 0, 1, 7, 15, 10, 1, 0, 0, 0, 0, 1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, 1, 10, 36, 56, 35, 6, 0, 0, 0, 0, 0, 0, 1, 11, 45, 84, 70, 21, 1, 0, 0, 0, 0, 0, 0, 1, 12, 55
Offset: 0
Examples
Array begins: 1, 0, 0, 0, 0, 0, ... 1, 1, 0, 0, 0, 0, ... 1, 2, 1, 0, 0, 0, ... 1, 3, 3, 1, 0, 0, ... 1, 4, 6, 4, 1, 0, ... 1, 5, 10, 10, 5, 1, ... As a triangle, this begins: 1; 1, 0; 1, 1, 0; 1, 2, 0, 0; 1, 3, 1, 0, 0; 1, 4, 3, 0, 0, 0; 1, 5, 6, 1, 0, 0, 0; 1, 6, 10, 4, 0, 0, 0, 0; ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5459
- Math Stack Exchange, Homology of the n-torus using the Künneth Formula
- Nicholas Owad and Anastasiia Tsvietkova, Random meander model for links, arXiv:2205.03451 [math.GT], 2022.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Magma
/* As triangle */ [[Binomial(n-k,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 08 2017
-
Maple
with(combinat): for s from 0 to 20 do for n from s to 0 by -1 do printf(`%d,`, binomial(n, s-n)) od:od: # James Sellers, Mar 17 2000
-
Mathematica
Flatten[ Table[ Binomial[n-k , k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Dec 05 2012 *)
-
PARI
T(n,k) = binomial(n,k) \\ Charles R Greathouse IV, Feb 07 2017
Formula
As a triangle: T(n,k) = A026729(n,n-k).
G.f. of the triangular version: 1/(1-x-x^2*y). - R. J. Mathar, Aug 11 2015
Comments