A052571 E.g.f. x^3/(1-x)^2.
0, 0, 0, 6, 48, 360, 2880, 25200, 241920, 2540160, 29030400, 359251200, 4790016000, 68497228800, 1046139494400, 16999766784000, 292919058432000, 5335311421440000, 102437979291648000, 2067966706950144000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 514.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint, arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for sequences related to factorial base representation
Crossrefs
Programs
-
Magma
[0,0] cat [n*(n+1)*(n+2)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
Maple
spec := [S,{S=Prod(Z,Z,Z,Sequence(Z),Sequence(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20); [seq (n*(n+1)*(n+2)*n!,n=0..17)]; # Zerinvary Lajos, Nov 25 2006 a:=n->add((n!),j=1..n-2):seq(a(n), n=0..21); # Zerinvary Lajos, Aug 27 2008 G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 01 2009
-
Mathematica
Table[Sum[n!, {i, 3, n}], {n, 0, 19}] (* Zerinvary Lajos, Jul 12 2009 *) With[{nn=20},CoefficientList[Series[x^3/(1-x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 27 2025 *)
-
Scheme
(define (A052571 n) (if (< n 2) 0 (* (- n 2) (A000142 n)))) ;; Antti Karttunen, May 07 2015
Formula
E.g.f.: x^3/(-1+x)^2.
Recurrence: {a(1)=0, a(0)=0, a(2)=0, a(3)=6, (1-n^2)*a(n)+(-2+n)*a(n+1)=0}.
For n >= 2, a(n) = (n-2)*n!.
a(n+2) = n*(n+1)*(n+2)*n!. - Zerinvary Lajos, Nov 25 2006
From Amiram Eldar, Jan 14 2021: (Start)
Comments