A052673 a(n) = 3*n*n!.
0, 3, 12, 54, 288, 1800, 12960, 105840, 967680, 9797760, 108864000, 1317254400, 17244057600, 242853811200, 3661488230400, 58845346560000, 1004293914624000, 18140058832896000, 345728180109312000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 621
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
Programs
-
Magma
[3*(Factorial(n+1)-Factorial(n)): n in [0..30]]; // G. C. Greubel, Jun 12 2022
-
Maple
spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Union(Z,Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Table[3 n n!,{n,0,20}] (* Harvey P. Dale, Feb 12 2017 *)
-
SageMath
[3*n*factorial(n) for n in (0..30)] # G. C. Greubel, Jun 12 2022
Formula
E.g.f.: 3*x/(1-x)^2.
Recurrence: a(0)=0, a(1)=3, (n-1)*a(n) = n^2*a(n-1).
For n>0: a(n) = A083746(n+2). - Reinhard Zumkeller, Apr 14 2007
G.f.: 3*Hypergeometric2F0([2,2], [], x). - G. C. Greubel, Jun 12 2022