cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083746 a(1) = 1, a(2) = 2; for n>2, a(n) = 3*(n-2)*(n-2)!.

Original entry on oeis.org

1, 2, 3, 12, 54, 288, 1800, 12960, 105840, 967680, 9797760, 108864000, 1317254400, 17244057600, 242853811200, 3661488230400, 58845346560000, 1004293914624000, 18140058832896000, 345728180109312000, 6933770723303424000
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 06 2003

Keywords

Comments

a(1) = 1, a(2) = 2, define S(k) = sum of all the terms other than a(k) k < n. a(n) = Sum_{k=1..n-1} S(k).

Examples

			a(4) = {a(1) + a(2)} + {a(1) +a(3)} + {a(2) + a(3)} = 12.
		

Crossrefs

Programs

  • Magma
    [n le 2 select n else 3*(n-2)*Factorial(n-2): n in [1..40]]; // G. C. Greubel, Feb 03 2024
    
  • Maple
    a := proc(n) option remember: if n=1 then RETURN(1) fi: if n=2 then RETURN(2) fi: 3*(n-2)*(n-2)! end: for n from 1 to 40 do printf(`%d,`,a(n)) od: # James Sellers, May 19 2003
  • Mathematica
    Join[{1,2},Table[3n n!,{n,20}]] (* Harvey P. Dale, Feb 27 2012 *)
  • SageMath
    [1,2]+[3*(n-2)*factorial(n-2) for n in range(3, 41)] # G. C. Greubel, Feb 03 2024

Formula

a(n) = (n-2)*Sum_{j=1..n-1} a(j).
E.g.f.: 3*(x-2)*log(1-x) - 5*x + x^2. - Vladeta Jovovic, May 06 2003
From Reinhard Zumkeller, Apr 14 2007: (Start)
Sum_{k=1..n} a(k) = A052560(n-1) for n > 1.
a(n) = A052673(n-2) for n > 2. (End)

Extensions

Simpler description from Vladeta Jovovic, May 06 2003
More terms from James Sellers, May 19 2003

A122972 a(1) = 1, a(2) = 2; for n>2, a(n+1) = a(n)*(n-1) + a(n-1)*n.

Original entry on oeis.org

1, 2, 4, 14, 58, 302, 1858, 13262, 107698, 980942, 9905458, 109844942, 1327159858, 17353902542, 244180971058, 3678842132942, 59089527531058, 1007972756756942, 18199148360427058, 346736152866068942
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2006

Keywords

Comments

a(n+2) - a(n) = 3*(n-1)*(n-1)! = A052673(n).

Programs

  • Haskell
    a122972 n = a122972_list !! (n-1)
    a122972_list = 1 : 2 : zipWith (+)
       (zipWith (*) [2..] a122972_list) (zipWith (*) [1..] $ tail a122972_list)
    -- Reinhard Zumkeller, Nov 15 2011
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==2,a[n]==a[n-1](n-2)+a[n-2](n-1)}, a,{n,20}] (* Harvey P. Dale, Nov 02 2011 *)
    Table[2*(-1)^n-3*(-1)^n*Sum[(-1)^k*k!,{k,0,n-1}],{n,1,20}] (* Vaclav Kotesovec, Oct 28 2012 *)

Formula

a(n) = 2*(-1)^n - 3*(-1)^n*Sum_{k=0..n-1} (-1)^k*k!. - Vaclav Kotesovec, Oct 28 2012

A348555 Numbers k that divide the sum of the digits of 3^k * k!.

Original entry on oeis.org

1, 3, 9, 27, 72, 111, 129, 148, 161, 450, 762, 1233, 1260, 2052, 9153, 15840, 16067, 16302, 16317, 16332, 16435, 74670, 74946, 125046, 208566, 347670, 347685, 583263, 1609667, 1610942, 1616476, 1616532, 1616958, 2683143, 2700261, 4480092, 7469682, 7470432, 7492497
Offset: 1

Views

Author

Kevin P. Thompson, Oct 21 2021

Keywords

Examples

			9 is a term because the sum of the digits of 3^9 * 9! = 7142567040 is 36 which is divisible by 9.
		

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[Plus @@ IntegerDigits[3^n * n!], n] == 0, Print[n]], {n, 1, 10000}]
  • PARI
    isok(k) = !(sumdigits(3^k * k!) % k);

Extensions

a(36)-a(39) from Martin Ehrenstein, Nov 19 2021
Showing 1-3 of 3 results.