A162990
Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).
Original entry on oeis.org
4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1
The first few rows of the triangle are:
[4]
[36, 9]
[576, 144, 64]
[14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
MN(z;n=1) = 4
MN(z;n=2) = 36 + 9*z
MN(z;n=3) = 576 + 144*z + 64*z^2
MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
- Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
-
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
-
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
A052778
E.g.f.: x^4*log(-1/(-1+x)).
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 360, 1680, 10080, 72576, 604800, 5702400, 59875200, 691891200, 8717829120, 118879488000, 1743565824000, 27360571392000, 457312407552000, 8109673360588800, 152056375511040000, 3005349539512320000, 62444484876533760000, 1360632459941314560000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
a[n_] := If[n < 5, 0, n!/(n - 4)]; Array[a, 20, 0] (* Amiram Eldar, Oct 07 2020 *)
With[{nn=30},CoefficientList[Series[x^4 Log[-1/(x-1)],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 28 2021 *)
A052794
E.g.f.: -x^5*log(1-x).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 720, 2520, 13440, 90720, 725760, 6652800, 68428800, 778377600, 9686476800, 130767436800, 1902071808000, 29640619008000, 492490285056000, 8688935743488000, 162193467211776000, 3193183885731840000, 66117689869271040000, 1436223152160276480000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(Z,Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
a[n_] := If[n < 6, 0, n!/(n - 5)]; Array[a, 20, 0] (* Amiram Eldar, Oct 07 2020 *)
A052766
Expansion of e.g.f.: (log(1-x))^2*x^3.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 720, 4620, 33600, 276192, 2540160, 25874640, 289301760, 3523208832, 46425899520, 658169366400, 9988896153600, 161590513766400, 2775695618949120, 50455787382604800, 967644983144448000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(Z,Z,Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[(Log[1-x])^2*x^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
Join[{0,0,0,0,0}, RecurrenceTable[{a[5] == 120, a[6] == 720, (n^4 -7*n^2 -3*n^3 +15*n +18)*a[n] + (8*n -2*n^3 +5*n^2 -20)*a[n+1] == -(-3*n +n^2 + 2)*a[n+2]}, a, {n, 5, 30}]] (* G. C. Greubel, Sep 05 2018 *)
-
x='x+O('x^30); concat(vector(5), Vec(serlaplace(log(-1/(-1+x))^2*x^3))) \\ G. C. Greubel, Sep 05 2018
-
a(n)={if(n>=3, 2*n*(n-1)*(n-2)*abs(stirling(n-3,2,1)), 0)} \\ Andrew Howroyd, Aug 08 2020
A058298
Triangle n!/(n-k), 1 <= k < n, read by rows.
Original entry on oeis.org
2, 3, 6, 8, 12, 24, 30, 40, 60, 120, 144, 180, 240, 360, 720, 840, 1008, 1260, 1680, 2520, 5040, 5760, 6720, 8064, 10080, 13440, 20160, 40320, 45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880, 403200, 453600, 518400, 604800, 725760, 907200, 1209600, 1814400, 3628800
Offset: 2
Triangle begins:
2;
3, 6;
8, 12, 24;
30, 40, 60, 120;
144, 180, 240, 360, 720;
840, 1008, 1260, 1680, 2520, 5040;
5760, 6720, 8064, 10080, 13440, 20160, 40320;
45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880;
...
-
Flatten[Table[n!/(n-k),{n,2,10},{k,n-1}]] (* Harvey P. Dale, Jul 23 2014 *)
-
T(n,k)={if(kAndrew Howroyd, Aug 08 2020
Showing 1-5 of 5 results.
Comments