cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077012 Triangle in which n-th row contains all possible products of n-1 of the first n natural numbers in ascending order.

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 6, 8, 12, 24, 24, 30, 40, 60, 120, 120, 144, 180, 240, 360, 720, 720, 840, 1008, 1260, 1680, 2520, 5040, 5040, 5760, 6720, 8064, 10080, 13440, 20160, 40320, 40320, 45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880
Offset: 1

Views

Author

Amarnath Murthy, Oct 26 2002

Keywords

Comments

Row products of A137853. - Mats Granvik, Jun 24 2009

Examples

			Triangle begins:
     1;
     1,    2;
     2,    3,    6;
     6,    8,   12,   24;
    24,   30,   40,   60,   120;
   120,  144,  180,  240,   360,   720;
   720,  840, 1008, 1260,  1680,  2520,  5040;
  5040, 5760, 6720, 8064, 10080, 13440, 20160, 40320;
  ...
		

Crossrefs

Row sums give A000254.

Programs

  • Maple
    A077012_row := proc(n) local k; seq(n!/(n-k),k=0..n-1) end:
    seq(print(A077012_row(n)),n=1..9); # Peter Luschny, Mar 21 2011
  • Mathematica
    Flatten[Table[n!/(n-k),{n,10},{k,0,n-1}]] (* Harvey P. Dale, Dec 25 2011 *)

Formula

E.g.f.: -log(1-x)/(1-y*x). - Vladeta Jovovic, Feb 07 2003
Sum_{n>=1} Sum_{k=0..n-1} 1/T(n, k) = 3*e/2 (= A196533 / 10). - Amiram Eldar, Jun 29 2025

Extensions

More terms from Sascha Kurz, Jan 26 2003

A156047 Triangle read by rows: T(n, k) = (n+1)!*(1/k + 1/(n-k+1)).

Original entry on oeis.org

4, 9, 9, 32, 24, 32, 150, 100, 100, 150, 864, 540, 480, 540, 864, 5880, 3528, 2940, 2940, 3528, 5880, 46080, 26880, 21504, 20160, 21504, 26880, 46080, 408240, 233280, 181440, 163296, 163296, 181440, 233280, 408240, 4032000, 2268000, 1728000, 1512000, 1451520, 1512000, 1728000, 2268000, 4032000
Offset: 1

Views

Author

Roger L. Bagula, Feb 02 2009

Keywords

Comments

Row sums are (n+1)*A052517(n+2) = {4, 18, 88, 500, 3288, 24696, 209088, 1972512, 20531520, ...}.

Examples

			Triangle begins as:
      4;
      9,     9;
     32,    24,    32;
    150,   100,   100,   150;
    864,   540,   480,   540,   864;
   5880,  3528,  2940,  2940,  3528,  5880;
  46080, 26880, 21504, 20160, 21504, 26880, 46080;
		

Crossrefs

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> (n+1)*Factorial(n+1)/(k*(n-k+1)) ))); # G. C. Greubel, Dec 02 2019
  • Magma
    [(n+1)*Factorial(n+1)/(k*(n-k+1)): k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 02 2019
    
  • Maple
    seq(seq( (n+1)*(n+1)!/(k*(n-k+1)), k=1..n), n=1..10); # G. C. Greubel, Dec 02 2019
  • Mathematica
    Table[(n+1)*(n+1)!/(k*(n-k+1)), {n,10}, {k,n}]//Flatten (* modified by G. C. Greubel, Dec 02 2019 *)
  • PARI
    T(n,k) = (n+1)*(n+1)!/(k*(n-k+1)); \\ G. C. Greubel, Dec 02 2019
    
  • Sage
    [[(n+1)*factorial(n+1)/(k*(n-k+1)) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Dec 02 2019
    

Formula

T(n, k) = (n+1)*(n+1)!/(k*(n-k+1)).
Sum_{k=1..n} T(n,k) = 2*(n+1)!*H(n), where H(n) is the harmonic number. - G. C. Greubel, Dec 02 2019

Extensions

Offset changed by G. C. Greubel, Dec 02 2019
Showing 1-2 of 2 results.