cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052760 Expansion of e.g.f.: x^2*(exp(x)-1)^2.

Original entry on oeis.org

0, 0, 0, 0, 24, 120, 420, 1260, 3472, 9072, 22860, 56100, 134904, 319176, 745108, 1719900, 3931680, 8912352, 20053404, 44825940, 99613960, 220200120, 484441188, 1061157900, 2315254704, 5033163600, 10905189100, 23555209860, 50734299672, 108984793512
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Original name: a simple grammar.

Crossrefs

Cf. A052749.

Programs

  • Magma
    [0,0,0] cat [n*(n-1)*(2^n-8)/4: n in [3..30]]; // Vincenzo Librandi, May 05 2013
    
  • Maple
    spec := [S,{B=Set(Z,1 <= card),S=Prod(B,B,Z,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Part[#, Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0] #)&@CoefficientList[Series[x^2 Exp[x]^2 - 2 Exp[x] x^2 + x^2, {x, 0, 30}], x]//ExpandAll (* Vincenzo Librandi, May 05 2013 *)
  • PARI
    a(n) = if(n<4, 0, n*(n-1)*(2^n-8)/4); \\ Joerg Arndt, May 06 2013

Formula

E.g.f.: x^2*exp(x)^2-2*exp(x)*x^2+x^2.
Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, (2*n^2+6*n+4)*a(n)+(6-3*n^2-3*n)*a(n+1)+(n^2-n)*a(n+2)}.
For n>=3, a(n) = n*(n-1)*(2^n-8)/4. - Vaclav Kotesovec, Nov 27 2012
a(n) = n*A052749(n-1) = 2*n*(n-1)*Stirling2(n-2,2) for n >= 2. - Andrew Howroyd, Aug 08 2020

Extensions

More terms from Vincenzo Librandi, May 05 2013
Name changed by Andrew Howroyd, Aug 08 2020