A052787 Product of 5 consecutive integers.
0, 0, 0, 0, 0, 120, 720, 2520, 6720, 15120, 30240, 55440, 95040, 154440, 240240, 360360, 524160, 742560, 1028160, 1395360, 1860480, 2441880, 3160080, 4037880, 5100480, 6375600, 7893600, 9687600, 11793600, 14250600, 17100720, 20389320, 24165120, 28480320, 33390720
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Thomas Harriot, Manuscript 6782, p. 77, c. 1599.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 744.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n*(n-1)*(n-2)*(n-3)*(n-4): n in [0..35]]; // Vincenzo Librandi, May 26 2011
-
Maple
spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); seq(numbperm (n,5), n=0..31); # Zerinvary Lajos, Apr 26 2007 G(x):=x^5*exp(x): f[0]:=G(x): for n from 1 to 31 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..31); # Zerinvary Lajos, Apr 05 2009
-
Mathematica
Times@@@(Partition[Range[-4,35],5,1]) (* Harvey P. Dale, Feb 04 2011 *)
-
PARI
a(n)=120*binomial(n,5) \\ Charles R Greathouse IV, Nov 20 2011
Formula
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)=n!/(n-5)!. [Corrected by Philippe Deléham, Dec 12 2003]
E.g.f.: x^5*exp(x).
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, (-1-n)*a(n)+(-4+n)*a(n+1), a(5)=120}.
O.g.f.: 120*x^5/(-1+x)^6. - R. J. Mathar, Nov 16 2007
For n>5: a(n) = A173333(n,n-5). - Reinhard Zumkeller, Feb 19 2010
a(n) = a(n-1) + 5*A052762(n). - J. M. Bergot, May 30 2012
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=5} 1/a(n) = 1/96.
Sum_{n>=5} (-1)^(n+1)/a(n) = 2*log(2)/3 - 131/288. (End)
Extensions
More terms from Henry Bottomley, Mar 20 2000
Comments