cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052810 a(n) = 1 + (number of partitions of n, n>0).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 23, 31, 43, 57, 78, 102, 136, 177, 232, 298, 386, 491, 628, 793, 1003, 1256, 1576, 1959, 2437, 3011, 3719, 4566, 5605, 6843, 8350, 10144, 12311, 14884, 17978, 21638, 26016, 31186, 37339, 44584, 53175, 63262, 75176, 89135
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n>0: number of occurrences of n in partitions of 2*n: a(n)=A066633(2*n,n), cf. A058696. - Reinhard Zumkeller, Feb 22 2004

Crossrefs

Programs

  • Maple
    spec := [S,{B=Set(C),C=Sequence(Z,1 <= card), S = Union(C,B)}, unlabeled]:
    seq(combstruct[count](spec, size=n), n=0..20);
    A052810 := n -> combinat:-numbpart(n) + ifelse(n=0, 0, 1):
    seq(A052810(i), i=0..50);
  • Mathematica
    Join[{1}, PartitionsP[Range[50]] + 1] (* Paolo Xausa, Jun 21 2024 *)

Formula

G.f.: exp(Sum_{j >= 1} (x^j)/(1 - x^j)/j) - x/(x - 1). [Simplified by Paolo Xausa, Jun 21 2024]
a(n) = A000041(n) + A057427(n). - Alois P. Heinz, May 14 2023

Extensions

Better description and more terms from Vladeta Jovovic, Oct 06 2001