cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A327029 T(n, k) = Sum_{d|n} phi(d) * A008284(n/d, k) for n >= 1, T(0, 0) = 1. Triangle read by rows for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 2, 2, 1, 1, 0, 6, 6, 4, 2, 1, 1, 0, 7, 3, 4, 3, 2, 1, 1, 0, 8, 8, 6, 6, 3, 2, 1, 1, 0, 9, 6, 9, 6, 5, 3, 2, 1, 1, 0, 10, 11, 10, 10, 8, 5, 3, 2, 1, 1, 0, 11, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 12, 17, 19, 19, 14, 12, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Peter Luschny, Aug 24 2019

Keywords

Comments

Dirichlet convolution of phi(n) and A008284(n,k) for n >= 1. - Richard L. Ollerton, May 07 2021

Examples

			Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 2, 1]
[3] [0, 3, 1, 1]
[4] [0, 4, 3, 1, 1]
[5] [0, 5, 2, 2, 1, 1]
[6] [0, 6, 6, 4, 2, 1, 1]
[7] [0, 7, 3, 4, 3, 2, 1, 1]
[8] [0, 8, 8, 6, 6, 3, 2, 1, 1]
[9] [0, 9, 6, 9, 6, 5, 3, 2, 1, 1]
		

Crossrefs

Cf. A008284, A000010, A078392 (row sums), A282750.
Cf. A000041 (where reversed rows converge to).
T(2n,n) gives A052810.

Programs

  • SageMath
    def DivisorTriangle(f, T, Len, w = None):
        D = [[1]]
        for n in (1..Len-1):
            r = lambda k: [f(d)*T(n//d,k) for d in divisors(n)]
            L = [sum(r(k)) for k in (0..n)]
            if w != None: L = [*map(lambda v: v * w(n), L)]
            D.append(L)
        return D
    DivisorTriangle(euler_phi, A008284, 10)

Formula

From Richard L. Ollerton, May 07 2021: (Start)
For n >= 1, T(n,k) = Sum_{i=1..n} A008284(gcd(n,i),k).
For n >= 1, T(n,k) = Sum_{i=1..n} A008284(n/gcd(n,i),k)*phi(gcd(n,i))/phi(n/gcd(n,i)). (End)

A363048 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) is the number of partitions of n whose greatest part is a multiple of k.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 5, 3, 1, 1, 0, 7, 3, 2, 1, 1, 0, 11, 6, 4, 2, 1, 1, 0, 15, 7, 5, 3, 2, 1, 1, 0, 22, 12, 7, 6, 3, 2, 1, 1, 0, 30, 14, 11, 7, 5, 3, 2, 1, 1, 0, 42, 22, 14, 11, 8, 5, 3, 2, 1, 1, 0, 56, 27, 19, 14, 11, 7, 5, 3, 2, 1, 1, 0, 77, 40, 27, 21, 15, 12, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, May 14 2023

Keywords

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,  1;
  0,  3,  1,  1;
  0,  5,  3,  1, 1;
  0,  7,  3,  2, 1, 1;
  0, 11,  6,  4, 2, 1, 1;
  0, 15,  7,  5, 3, 2, 1, 1;
  0, 22, 12,  7, 6, 3, 2, 1, 1;
  0, 30, 14, 11, 7, 5, 3, 2, 1, 1;
  ...
		

Crossrefs

Row sums give A323433.
Column k=0..5 give A000007, A000041, A027187, A363045, A363046, A363047.
T(2n,n) gives A052810.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), add(
        (j-> b(n-j, min(n-j, j)))(k*i), i=0..n/k)):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, May 14 2023
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[n - i, i]]]];
    T[n_, k_] := If[k == 0, If[n == 0, 1, 0], Sum[Function[j, b[n - j, Min[n - j, j]]][k*i], {i, 0, n/k}]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz *)
  • PARI
    T(n, k) = sum(j=0, n, #partitions(n-k*j, k*j));

Formula

For k > 0, g.f. of column k: Sum_{i>=0} x^(k*i)/Product_{j=1..k*i} (1-x^j).

A211026 Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1

Views

Author

Omar E. Pol, Oct 29 2012

Keywords

Comments

On the infinite square grid the diagram of regions of the set of partitions of n is represented by a rectangle with base = n and height = A000041(n). The rectangle contains n shells. Each shell contains regions. Each row of a region is a part. Each part of size k contains k cells. The number of regions equals the number of partitions of n (see illustrations in the links section). For a minimalist version see A139582. For the definition of "region of n" see A206437.

Crossrefs

Formula

a(n) = 2*A000041(n) + 2 = 2*A052810(n) = A139582(n) + 2.

Extensions

a(18) corrected by Georg Fischer, Apr 11 2024

A213597 Triangle T(n,k), n>=1, 0<=k<=A000041(n), read by rows: row n gives the coefficients of the chromatic polynomial of the ranked poset L(n) of partitions of n, highest powers first.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -5, 10, -9, 3, 0, 1, -9, 36, -79, 98, -64, 17, 0, 1, -17, 136, -666, 2192, -5032, 8111, -9013, 6569, -2818, 537, 0, 1, -28, 378, -3242, 19648, -88676, 306308, -819933, 1703404, -2723374, 3285552, -2887734, 1739326, -639065, 107435, 0
Offset: 1

Views

Author

Alois P. Heinz, Jun 15 2012

Keywords

Comments

The ranked poset L(n) of partitions is defined in A002846. A partition of n into k parts is connected to another partition of n into k+1 parts that results from splitting one part of the first partition into two parts.

Examples

			L(5):     (32)---(221)
         /    \ /     \
        /      X       \
       /      / \       \
    (5)---(41)---(311)---(2111)---(11111)
Chromatic polynomial: q^7-9*q^6+36*q^5-79*q^4+98*q^3-64*q^2+17*q.
Triangle T(n,k) begins:
  1,   0;
  1,  -1,   0;
  1,  -2,   1,    0;
  1,  -5,  10,   -9,    3,     0;
  1,  -9,  36,  -79,   98,   -64,   17,     0;
  1, -17, 136, -666, 2192, -5032, 8111, -9013, 6569, -2818, 537, 0;
		

Crossrefs

Row lengths give: 1+A000041(n) = A052810(n).
Row sums (for n>1) and last elements of rows give: A000004.
Columns k=1-2 give: A000012, (-1)*A000097(n-2).

Extensions

Edited by Alois P. Heinz at the suggestion of Gus Wiseman, May 02 2016

A281957 a(n) = largest k such that n has at least k partitions each containing at least k parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 03 2017

Keywords

Examples

			-------------------------------------
                          Number
Partitions of 5          of terms
-------------------------------------
5 .......................... 1
1 + 4 ...................... 2
2 + 3 ...................... 2
1 + 1 + 3 .................. 3
1 + 2 + 2 .................. 3
1 + 1 + 1 + 2 .............. 4
1 + 1 + 1 + 1 + 1 .......... 5
-------------------------------------
There are 7 partitions of the integer 5 is 7. The four partitions 1 + 1 + 3, 1 + 2 + 2, 1 + 1 + 1 + 2 and 1 + 1 + 1 + 1 + 1 each have at least 3 parts, so a(5) = 3.
		

Crossrefs

Programs

  • Magma
    lst:=[]; k:=1; s:=0; for m in [0..8] do s+:=NumberOfPartitions(m); while k le s do Append(~lst, k); k+:=1; end while; Append(~lst, s); end for; lst;

A338001 Irregular triangle read by rows, a refinement of A271708.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 6, 2, 3, 0, 24, 8, 4, 3, 4, 0, 120, 8, 12, 6, 6, 4, 5, 0, 720, 48, 16, 48, 18, 6, 18, 8, 8, 5, 6, 0, 5040, 48, 48, 240, 18, 24, 12, 72, 12, 8, 24, 10, 10, 6, 7, 0, 40320, 384, 96, 192, 1440, 36, 36, 24, 36, 360, 32, 12, 32, 16, 96, 15, 10, 30, 12, 12, 7, 8
Offset: 0

Views

Author

Peter Luschny, Nov 13 2020

Keywords

Comments

Row n of the triangle gives the sizes of the centralizers of any permutation of cycle type given by the partitions of n with max. part k.
T(n, k) divides n! if k > 0 and in this case the n!/T(n, k) give, up to order, the rows of A036039.

Examples

			Triangle rows start:
0: [1];
1: [0], [1];
2: [0], [2],    [2];
3: [0], [6],    [2],           [3];
4: [0], [24],   [8, 4],        [3],              [4];
5: [0], [120],  [8, 12],       [6, 6],           [4],         [5];
6: [0], [720],  [48, 16, 48],  [18, 6, 18],      [8, 8],      [5],      [6];
7: [0], [5040], [48, 48, 240], [18, 24, 12, 72], [12, 8, 24], [10, 10], [6], [7];
.
For n = 4 the partition of 4 with cycle type [2, 2] has centralizer size 8, and the partition [2, 1, 1] has centralizer size 4. Therefore in column 2 in the above triangle the pair [8, 4] appears.
		

Crossrefs

Cf. A271708, A110143 (row sums), A052810 (row length), A126074, A036039.

Programs

  • SageMath
    def A338001(n):
        R = []
        for k in (0..n):
            P = Partitions(n, max_part=k, inner=[k])
            q = [p.aut() for p in P]
            R.append(q if q != [] else [0])
        return flatten(R)
    for n in (0..7): print(A338001(n))

A356656 Partition triangle read by rows. The coefficients of the incomplete Bell polynomials.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 3, 6, 1, 0, 1, 5, 10, 10, 15, 10, 1, 0, 1, 6, 15, 10, 15, 60, 15, 20, 45, 15, 1, 0, 1, 7, 21, 35, 21, 105, 70, 105, 35, 210, 105, 35, 105, 21, 1, 0, 1, 8, 28, 56, 35, 28, 168, 280, 210, 280, 56, 420, 280, 840, 105, 70, 560, 420, 56, 210, 28, 1
Offset: 0

Views

Author

Peter Luschny, Aug 28 2022

Keywords

Comments

We call a triangle a 'partition triangle' if the rows have length A000041 or A000041 + 1.

Examples

			The triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 1, 3,  1;
[4] 0, 1, [4,  3],  6,  1;
[5] 0, 1, [5, 10], [10, 15],  10,  1;
[6] 0, 1, [6, 15, 10], [15,  60, 15], [20, 45],  15,   1;
[7] 0, 1, [7, 21, 35], [21, 105, 70, 105], [35, 210, 105], [35, 105], 21, 1;
Summing the bracketed terms reduces the triangle to A048993.
The first few polynomials are:
[0] 1;
[1] 0, z[0];
[2] 0, z[1], z[0]^2;
[3] 0, z[2], 3*z[0]*z[1], z[0]^3;
[4] 0, z[3], 4*z[0]*z[2]+3*z[1]^2, 6*z[0]^2*z[1], z[0]^4;
[5] 0, z[4], 5*z[0]*z[3]+10*z[1]*z[2], 10*z[0]^2*z[2]+15*z[0]*z[1]^2, 10*z[0]^3* z[1], z[0]^5;
It is noteworthy that the substitution z[n] -> n! for n >= 0 yields A132393. More examples are given in the authors blog post (see links).
		

Crossrefs

Variants: A036040, A080575, A178867. Row sums: A000110.
A048993 (reduced triangle), A052810 (length of rows), A132393 (factorial substituion).

Programs

  • Maple
    aRow := n -> seq(coeffs(IncompleteBellB(n, k, seq(z[i], i = 0..n))), k = 0..n):
    seq(aRow(n), n = 0..8);
  • SageMath
    from functools import cache
    @cache
    def incomplete_bell_polynomial(n, k):
        Z = var(["z_" + str(i) for i in range(n - k + 1)])
        R = PolynomialRing(ZZ, Z, n - k + 1, order='lex')
        if k == 0: return R(k^n)
        return R(sum(binomial(n-1,j-1) * incomplete_bell_polynomial(n-j,k-1) * Z[j-1]
                for j in range(n - k + 2)).expand())
    def poly_row(n): return [incomplete_bell_polynomial(n, k) for k in range(n + 1)]
    def coeff_row(n): return flatten([[0] if (c := p.coefficients()) == [] else c for p in poly_row(n)])
    for n in range(8): print(coeff_row(n))

Formula

In row n the coefficients of IBell(n, k, Z_n) for k = 0..n are lined up. Z_n denotes the set of variables z[0], z[1], ... z[n] of the incomplete Bell polynomial IBell(n, k) of degree k.
Showing 1-7 of 7 results.