cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052830 A simple grammar: sequences of rooted cycles.

Original entry on oeis.org

1, 0, 2, 3, 32, 150, 1524, 12600, 147328, 1705536, 23681520, 345605040, 5654922624, 98624766240, 1870594556544, 37794037488480, 817362198512640, 18742996919324160, 455648694329309184, 11683777530785978880, 315505598702787118080, 8943481464393674096640
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Asymptotic behavior (formula 3.2.) in the INRIA reference is wrong! - Vaclav Kotesovec, Jun 03 2019

Crossrefs

Programs

  • Maple
    spec := [S,{B=Prod(C,Z),C=Cycle(Z),S=Sequence(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/(1+x*Log[1-x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
  • Maxima
    a(n):=(-1)^(n)*n!*sum((k!*stirling1(n-k,k))/(n-k)!,k,0,n/2); /* Vladimir Kruchinin, Nov 16 2011 */
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=2, i, 1/(j-1)*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, May 04 2022
    
  • PARI
    a(n) = n!*sum(k=0, n\2, k!*abs(stirling(n-k, k, 1))/(n-k)!); \\ Seiichi Manyama, May 04 2022

Formula

E.g.f.: 1/(1-x*log(1/(1-x))).
a(n) = (-1)^n*n!*Sum_{k=0..floor(n/2)} k!*Stirling1(n-k,k)/(n-k)!. - Vladimir Kruchinin, Nov 16 2011
a(n) ~ n! * r^(n+1)/(r+1/(r-1)), where r = 1.349976485401125... is the root of the equation (r-1)*exp(r) = r. - Vaclav Kotesovec, Sep 30 2013
a(0) = 1; a(n) = n! * Sum_{k=2..n} 1/(k-1) * a(n-k)/(n-k)!. - Seiichi Manyama, May 04 2022

Extensions

More terms from Alois P. Heinz, Mar 16 2016