cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052854 Number of forests of ordered trees on n total nodes.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 77, 235, 758, 2504, 8483, 29203, 102030, 360442, 1285926, 4625102, 16754302, 61067430, 223803775, 824188993, 3048383517, 11318928477, 42176798315, 157664823501, 591109863049, 2222121888117, 8374151243258, 31630394287364, 119725350703472
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

If B is a collection in which there are A000108(n-1) [Catalan numbers] things with n points, a(n) is the number of multisets of B with a total of n points.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Sequence(C),C=Prod(Z,B),S=Set(C)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); # version 1
    spec := [ C, {B=Union(Z,Prod(B,B)), C=Set(B)}, unlabeled ]; [seq(combstruct[count](spec, size=n), n=0..40)]; # version 2
    # third Maple program:
    with(numtheory):
    b:= proc(n) option remember; binomial(2*n, n) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          b(d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 10 2015
  • Mathematica
    max = 27; f[x_] := 1/Product[ (1 - x^k)^CatalanNumber[k - 1], {k, 1, max}]; se = Series[f[x], {x, 0, max}]; CoefficientList[se, x] (* Jean-François Alcover, Oct 05 2011, after g.f. *)
  • PARI
    a(n)=if(n<0,0,polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^((2*k-2)!/k!/(k-1)!)),n))

Formula

Euler transform of Catalan numbers C(n-1) (cf. A000108).
n*a(n) = Sum_{k=1..n} a(n-k)*b(k), b(k) = Sum_{d|k} binomial(2*d-2, d-1) = A066768(k). - Vladeta Jovovic, Jan 17 2002
G.f.: 1/(Product_{k>0} (1-x^k)^C(k-1)) where C() is Catalan numbers.
G.f.: A(z) = Product_{n >= 1} (1-z^n)^(-A000108(n)) = exp(Sum_{k >= 1} C(z^k)/k), where C(z) is the g.f. for the Catalan numbers.
a(n) ~ K 4^(n-1)/sqrt(Pi*n^3), where K ~ 1.71603053492228196404746... (see A246949).

Extensions

Better title from Geoffrey Critzer, Feb 22 2013
Minor edits by Vaclav Kotesovec, May 13 2014