cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A304787 Expansion of Product_{k>=1} (1 + x^k)^(binomial(2*k,k)/(k+1)).

Original entry on oeis.org

1, 1, 2, 7, 20, 67, 222, 758, 2617, 9189, 32554, 116494, 420046, 1525221, 5571065, 20457808, 75476447, 279636977, 1039965746, 3880891892, 14527657602, 54537434161, 205270200229, 774460385687, 2928429307876, 11095878177649, 42122749335654, 160192845018335, 610224764470011
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[(1 + x^k)^CatalanNumber[k], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d CatalanNumber[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000108(k).
a(n) ~ c * 4^n / n^(3/2), where c = exp( Sum_{k>=1} (-1)^k * (2 - 4^k + 4^k*sqrt(1 - 4^(1-k)))/(2*k) ) / sqrt(Pi) = 1.4863036894111457491052224706533674748514957... - Vaclav Kotesovec, Mar 21 2021

A052805 If B is a collection in which there are C(n-1) [Catalan numbers, A000108] things with n points, a(n) is the number of subsets without repetition of B with a total of n points.

Original entry on oeis.org

1, 1, 1, 3, 7, 21, 64, 204, 666, 2236, 7625, 26419, 92644, 328370, 1174234, 4231898, 15354424, 56042372, 205626906, 758021598, 2806143522, 10427671924, 38882984840, 145443260702, 545598228056, 2052086677666, 7736986142773, 29236241424977
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler transform of sequence [1,0,2,4,14,40,132,424,1430,...] (C(n-1) if n odd, C(n-1)-C(n/2-1) if n even).

Crossrefs

Programs

  • Maple
    spec := [S,{C=Sequence(B),B=Prod(C,Z),S=PowerSet(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    ClearAll[a]; b[k_] := Sum[ (-1)^(k/d + 1)*Binomial[2*d - 2, d - 1], {d, Divisors[k]}]; a[0] = 1; a[n_] := a[n] = (1/n)*Sum[a[n - k]*b[k], {k, 1, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 08 2012, after Vladeta Jovovic *)
  • PARI
    a(n)=local(A); if(n<1,!n,A=sum(k=1,n,(2*k-2)!/k!/(k-1)!*x^k,x*O(x^n)); polcoeff(exp(sum(k=1,n,-(-1)^k*subst(A,x,x^k)/k)),n))

Formula

a(n)=(1/n)*Sum_{k=1..n} a(n-k)*b(k), n>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(k/d+1)*binomial(2*d-2, d-1). - Vladeta Jovovic, Jan 17 2002
G.f. A(x)=exp(Sum_{k>0} -(-1)^k* C(x^k)/k) where C(x)=(1-sqrt(1-4x))/2= g.f. A000108 (offset 1).
G.f.: Product_{k>=1} (1+x^k)^(1/k*binomial(2*k-2, k-1)). - Vladeta Jovovic, Jan 17 2002

A246949 Decimal expansion of the coefficient K appearing in the asymptotic expression of the number of forests of ordered trees on n total nodes as K*4^(n-1)/sqrt(Pi*n^3).

Original entry on oeis.org

1, 7, 1, 6, 0, 3, 0, 5, 3, 4, 9, 2, 2, 2, 8, 1, 9, 6, 4, 0, 4, 7, 4, 6, 4, 3, 9, 9, 0, 4, 2, 2, 1, 2, 0, 9, 1, 9, 6, 9, 7, 6, 7, 8, 3, 7, 3, 1, 7, 8, 6, 3, 4, 6, 3, 1, 8, 6, 8, 1, 9, 4, 0, 7, 1, 4, 5, 1, 4, 9, 6, 2, 1, 3, 2, 6, 0, 2, 0, 1, 6, 9, 3, 6, 6, 4, 2, 7, 2, 3, 8, 1, 5, 2, 6, 4, 6, 1, 1, 7, 3, 0, 1, 1, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 08 2014

Keywords

Comments

See A052854.

Examples

			1.7160305349222819640474643990422120919697678373178634631868194...
		

Crossrefs

Cf. A052854.

Programs

  • Maple
    evalf(exp(sum(1/(2*k)*(1-sqrt(1-4^(1-k))),k=1..infinity)),100); # Vaclav Kotesovec, Sep 17 2014
  • Mathematica
    digits = 76; K = Exp[NSum[1/(2 k)*(1 - Sqrt[1 - 4^(1 - k)]), {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 100]]; RealDigits[K, 10, digits] // First

Formula

Equals exp(Sum_{k>=1} (1 - sqrt(1 - 4^(1 - k)))/(2*k)).

Extensions

More terms from Vaclav Kotesovec, Sep 17 2014

A066768 Sum_{d|n} binomial(2*d-2,d-1).

Original entry on oeis.org

1, 3, 7, 23, 71, 261, 925, 3455, 12877, 48693, 184757, 705713, 2704157, 10401527, 40116677, 155120975, 601080391, 2333619351, 9075135301, 35345312513, 137846529751, 538258059199, 2104098963721, 8233431436745, 32247603683171
Offset: 1

Views

Author

Vladeta Jovovic, Jan 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*d-2,d-1], {d, Divisors[n]}], {n,1,30}] (* Vaclav Kotesovec, Jun 08 2019 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,binomial(2*d-2,d-1)))
    
  • PARI
    a(n)=polcoeff(sum(m=1,n,x^m/sqrt(1-4*x^m+x*O(x^n))),n) /* Paul D. Hanna */

Formula

G.f.: Sum_{n>=1} x^n/sqrt(1-4*x^n). [From Paul D. Hanna, Aug 23 2011]
Logarithmic derivative of A052854, the number of unordered forests on n nodes.
Equals A051731 * A000984, i.e. the inverse Mobius transform of A000984. - Gary W. Adamson, Nov 09 2007
a(n) ~ 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 08 2019
Showing 1-4 of 4 results.