A052804
A simple grammar: cycles of rooted cycles.
Original entry on oeis.org
0, 0, 2, 3, 20, 90, 714, 5460, 54704, 580608, 7214040, 96932880, 1452396912, 23507621280, 414102201408, 7827185489760, 158757800613120, 3429996441661440, 78775916315263488, 1914627403408320000, 49126748261368331520, 1326584986873331189760
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Prod(C,Z),C=Cycle(Z),S=Cycle(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
nn = 25; Range[0, nn]! CoefficientList[Series[Log[-1/(-1 + Log[-1/(-1 + x)]*x)], {x, 0, nn}], x] (* T. D. Noe, Feb 21 2013 *)
-
N = 66; x = 'x + O('x^N);
egf = -log(1 + x*log(1-x)) + 'c0;
gf = serlaplace(egf);
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Feb 21 2013 */
A368173
Expansion of e.g.f. -log(1 - x^2/2 * (exp(x) - 1)).
Original entry on oeis.org
0, 0, 0, 3, 6, 10, 105, 651, 2968, 26496, 265905, 2203795, 22830456, 288661308, 3476579197, 44960585775, 671394654960, 10329701480416, 164573071219233, 2865785889662019, 52647629639499280, 1000194250108913580, 20125846165307543661, 426789766980101676943
Offset: 0
-
a(n) = n!*sum(k=1, n\3, (k-1)!*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));
A368174
Expansion of e.g.f. -log(1 - x^3/6 * (exp(x) - 1)).
Original entry on oeis.org
0, 0, 0, 0, 4, 10, 20, 35, 616, 5124, 29520, 138765, 1312300, 16576846, 175795984, 1539037955, 15687832720, 216382727240, 3170822906976, 42007311638169, 553841577209940, 8435274815148370, 145708900713412960, 2517047758252082671, 42575155321545439384
Offset: 0
-
a(n) = n!*sum(k=1, n\4, (k-1)!*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));
A366564
Expansion of e.g.f. -log(1 - x^2 * (exp(x) - 1)).
Original entry on oeis.org
0, 0, 0, 6, 12, 20, 390, 2562, 11816, 166392, 1970730, 17131070, 241009692, 3861669396, 51411143966, 828234487290, 15865154629200, 283329069136112, 5431892804244306, 119420738547382134, 2628980439169097540, 59707303735169923980, 1488953374718002643142
Offset: 0
-
a(n) = n!*sum(k=1, n\3, (k-1)!*stirling(n-2*k, k, 2)/(n-2*k)!);
A366751
Expansion of e.g.f. -log(1 - x^3 * (exp(x) - 1)).
Original entry on oeis.org
0, 0, 0, 0, 24, 60, 120, 210, 20496, 181944, 1059120, 4990590, 180292200, 3191349876, 36598884504, 327837512730, 7732754793120, 194896185648240, 3574721299186656, 51311061420097014, 1105883184455171640, 32127696556638165420, 812811279492629700360
Offset: 0
-
a(n) = n!*sum(k=1, n\4, (k-1)!*stirling(n-3*k, k, 2)/(n-3*k)!);
A380338
Expansion of e.g.f. log(1 - x * log(1 - x)).
Original entry on oeis.org
0, 0, 2, 3, -4, -30, 54, 1260, 3856, -36288, -279000, 2970000, 56725008, 109343520, -5495740992, -26086263840, 1293641890560, 21771049466880, -45508965806592, -4589738336217600, 10493846174810880, 2423866077943511040, 34328754265480012800, -358930542362135546880
Offset: 0
-
my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(log(1-x*log(1-x)))))
-
a(n) = n!*sum(k=1, n\2, (-1)^(k-1)*(k-1)!*abs(stirling(n-k, k, 1))/(n-k)!);
Showing 1-6 of 6 results.
Comments