A052871 Expansion of e.g.f. -LambertW(x/(-1+x)).
0, 1, 4, 27, 268, 3585, 60846, 1255471, 30535912, 855688833, 27148954330, 962037575631, 37659124454700, 1613921425656865, 75156944627712598, 3778932799275876495, 204039148080188427856, 11774630933193827543553
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..369
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 842
- Index entries for reversions of series
Programs
-
Maple
spec := [S,{C=Sequence(Z,1 <= card),B=Set(S),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[-LambertW[x/(-1+x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
-
Maxima
makelist(sum((n!/k!)*binomial(n-1, k-1)*k^(k-1), k, 1, n), n, 0, 17); /* Bruno Berselli, May 25 2011 */
-
PARI
x='x+O('x^50); concat([0], Vec(serlaplace(- lambertw(x/(-1+x))) )) \\ G. C. Greubel, Nov 08 2017
Formula
E.g.f.: -LambertW(x/(-1+x))
a(n) = Sum_{k=1..n} (n!/k!)*binomial(n-1, k-1)*k^(k-1). - Vladeta Jovovic, Sep 17 2003
a(n) ~ (1+exp(-1))^(n+1/2)*n^(n-1). - Vaclav Kotesovec, Sep 30 2013
From Seiichi Manyama, Sep 10 2024: (Start)
E.g.f. A(x) satisfies A(x) = x * (A(x) + exp(A(x))).
E.g.f.: Series_Reversion( x / (x + exp(x)) ). (End)
Extensions
New name using e.g.f., Vaclav Kotesovec, Sep 30 2013
Comments