cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052910 Expansion of 1 + 2/(1-2*x-x^3).

Original entry on oeis.org

1, 2, 4, 8, 18, 40, 88, 194, 428, 944, 2082, 4592, 10128, 22338, 49268, 108664, 239666, 528600, 1165864, 2571394, 5671388, 12508640, 27588674, 60848736, 134206112, 296000898, 652850532, 1439907176, 3175815250, 7004481032
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • GAP
    a:=[2,4,8];; for n in [4..30] do a[n]:=2*a[n-1]+a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Oct 15 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^3)/(1-2*x-x^3) )); // G. C. Greubel, Oct 15 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Sequence(Prod(Z,Z,Z)),Union(Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{1},LinearRecurrence[{2,0,1},{2,4,8},30]] (* Harvey P. Dale, Jun 07 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x^3)/(1-2*x-x^3)) \\ G. C. Greubel, Oct 15 2019
    
  • Sage
    def A052910_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x^3)/(1-2*x-x^3)).list()
    A052910_list(30) # G. C. Greubel, Oct 15 2019
    

Formula

G.f.: (1-x^3)/(1-2*x-x^3).
a(n) = 2*a(n-1) + a(n-3), with a(0)=1, a(1)=2, a(2)=4, a(3)=8.
a(n) = Sum_{alpha=RootOf(-1 + 2*z + z^3)} (2/59)*(12 -8*alpha + 9*alpha^2)*alpha^(-1-n).
a(n) = A008998(n) - A008998(n-3). - R. J. Mathar, Nov 28 2011

Extensions

More terms from James Sellers, Jun 05 2000