cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052920 a(n) = a(n-3) + a(n-5) with initial values 1,0,0,1,0.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 1, 3, 4, 2, 6, 5, 5, 10, 7, 11, 15, 12, 21, 22, 23, 36, 34, 44, 58, 57, 80, 92, 101, 138, 149, 181, 230, 250, 319, 379, 431, 549, 629, 750, 928, 1060, 1299, 1557, 1810, 2227, 2617, 3109, 3784, 4427, 5336, 6401, 7536, 9120, 10828
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

From Bob Selcoe, May 19 2014: (Start)
Since a(n) is a recurrence of the form a(n) = a(n-F1) + a(n-F2) where seed values are a(0)=1 and a(n)=0 for n<0 exclusively (that is, a(n) is the number of compositions of n into parts F1 and F2), apply the following definitions and operations:
I. Generally, let m' be the maximum and k' be the minimum values such that n = F1*m' + (F2-F1)*k'.
Ia. In this sequence, since F1=3 and F2=5, then n = 3*m' + 2*k'. So for example, when n=49, m'=15 and k'=2 because 49 = 3*15 + 2*2.
II. Let G be the greatest common factor of F1 and F2 (in this sequence, G=1).
IIa. When n = F1*m' + (F2-F1)*k' is null, a(n)=0. When G=1, the greatest such value of n is F1*F2 - F1 - F2. So in this sequence, the greatest value of n where a(n)=0 is 3*5 - 3 - 5 = 7.
III. Then generally: a(n) = Sum_{i=0..j} ((m'-(F2-F1)*i)!/(k'+F1*i/G)!*(m'-k'-F2*i/G)!) where j is the maximum integer value such that j <= G*(m'-k')/F2.
IIIa. In this sequence, a(n) = Sum_{i=0..j} ((m'-2*i)!/(k'+3*i)!*(m'-k'-5*i)!). For example, when n=49, m'=15 and k'=2; therefore j=2 because 1*(15-2)/5 = 2.6. Thus a(49) = 15!/(2!*13!) + 13!/(5!*8!) + 11!/(8!*3!) = 105 + 1287 + 165 = 1557.
IV. Therefore: a(n) can be solved in closed form for all recurrences of this type.
Alternatively, a(n) equals the sum of the diagonal in the binomial triangle (i.e., Pascal's Triangle, A007318) with slope (F2-F1)/F1, starting at C(m',k'). In this sequence, the slope is 2/3. (End)

Examples

			a(49) = 15!/(2!*13!) + 13!/(5!*8!) + 11!/(8!*3!) = 105 + 1287 + 165 = 1557.
		

Crossrefs

Cf. A007318 (binomial triangle).

Programs

  • GAP
    a:=[1,0,0,1,0];; for n in [6..70] do a[n]:=a[n-3]+a[n-5]; od; a; # G. C. Greubel, Oct 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(1 - x^3 - x^5) )); // G. C. Greubel, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Z,Prod(Z,Z,Z)),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series(1/(1 -x^3 -x^5), x, n+1), x, n), n = 0..70); # G. C. Greubel, Oct 16 2019
  • Mathematica
    LinearRecurrence[{0,0,1,0,1},{1,0,0,1,0},70] (* Harvey P. Dale, Jan 12 2016 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/(1 - x^3 - x^5)) \\ G. C. Greubel, Oct 16 2019
    
  • Sage
    def A052920_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/(1 - x^3 - x^5)).list()
    A052920_list(70) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: 1/(1 - x^3 - x^5).
a(n) = a(n-3) + a(n-5), with a(0)=1, a(1)=0, a(2)=0, a(3)=1, a(4)=0.
a(n) = Sum_{alpha=RootOf(-1 +z^3 +z^5)} (1/3233)*(-60 + 661*alpha + 100*alpha^2 + 36*alpha^3 + 250*alpha^4)*alpha^(-1-n).
a(n) = Sum_{i=0..j} ( (m'-2*i)!/(k'+3*i)!*(m'-k'-5*i)!) (see comments for definitions of variables).

Extensions

More terms from James Sellers, Jun 05 2000