cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052922 Expansion of 1/(1 - 2*x^3 - x^4).

Original entry on oeis.org

1, 0, 0, 2, 1, 0, 4, 4, 1, 8, 12, 6, 17, 32, 24, 40, 81, 80, 104, 202, 241, 288, 508, 684, 817, 1304, 1876, 2318, 3425, 5056, 6512, 9168, 13537, 18080, 24848, 36242, 49697, 67776, 97332, 135636, 185249, 262440, 368604, 506134, 710129, 999648, 1380872
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A117413 (bijection).

Programs

  • GAP
    a:=[1,0,0,2];; for n in [5..50] do a[n]:=2*a[n-3]+a[n-4]; od; a; # G. C. Greubel, Oct 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1 -2*x^3 -x^4) )); // G. C. Greubel, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Z,Union(Z,Z,Prod(Z,Z))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..50);
    seq(coeff(series(1/(1 -2*x^3 -x^4), x, n+1), x, n), n = 0..50); # G. C. Greubel, Oct 16 2019
    # alternative
    A052922 := proc(n)
        if n <=3 then
            op(n+1,[1,0,0,2]) ;
        else
            2*procname(n-3)+procname(n-4) ;
        end if;
    end proc:
    seq(A052922(n),n=0..30) ; # R. J. Mathar, Nov 22 2024
  • Mathematica
    LinearRecurrence[{0,0,2,1}, {1,0,0,2}, 50] (* G. C. Greubel, Oct 16 2019 *)
    CoefficientList[Series[1/(1-2x^3-x^4),{x,0,50}],x] (* Harvey P. Dale, Nov 04 2024 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(1 -2*x^3 -x^4)) \\ G. C. Greubel, Oct 16 2019
    
  • Sage
    def A052922_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/(1 -2*x^3 -x^4)).list()
    A052922_list(50) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: 1/(1 - 2*x^3 - x^4).
a(n) = 2*a(n-3) + a(n-4), with a(0)=1, a(1)=0, a(2)=0, a(3)=2.
a(n) = Sum_{alpha=RootOf(-1+2*z^3+z^4)} (1/86)*(4 +26*alpha -3*alpha^2 -6*alpha^3)*alpha^(-1-n).

Extensions

More terms from James Sellers, Jun 05 2000