cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052929 Expansion of g.f. (2-3*x-x^2)/((1-x^2)*(1-3*x)).

Original entry on oeis.org

2, 3, 10, 27, 82, 243, 730, 2187, 6562, 19683, 59050, 177147, 531442, 1594323, 4782970, 14348907, 43046722, 129140163, 387420490, 1162261467, 3486784402, 10460353203, 31381059610, 94143178827, 282429536482, 847288609443, 2541865828330, 7625597484987, 22876792454962
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A052531: 2^n + (1+(-1)^n)/2.

Programs

  • GAP
    List([0..30], n-> 3^n + (1+(-1)^n)/2 ); # G. C. Greubel, Oct 17 2019
  • Magma
    [&+[(-1)^k+2^k*Binomial(n,k): k in [0..n]]: n in [0..30]]; // Bruno Berselli, Aug 27 2013
    
  • Maple
    spec:= [S, {S=Union(Sequence(Prod(Z,Z)), Sequence(Union(Z,Z,Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    seq(3^n + (1+(-1)^n)/2, n=0..30); # G. C. Greubel, Oct 17 2019
  • Mathematica
    Table[3^n + (1+(-1)^n)/2, {n, 0, 30}] (* Bruno Berselli, Aug 27 2013 *)
    LinearRecurrence[{3, 1, -3}, {2, 3, 10}, 40] (* Vincenzo Librandi, Mar 09 2018 *)
    Table[3^n + Fibonacci[n+1,0], {n,0,30}] (* G. C. Greubel, Oct 17 2019 *)
  • PARI
    x='x+O('x^30); Vec((2-3*x-x^2)/((1-x^2)*(1-3*x))) \\ Altug Alkan, Mar 09 2018
    
  • Sage
    [3^n + (1+(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Oct 17 2019
    

Formula

G.f.: (2-3*x-x^2)/((1-x^2)*(1-3*x)).
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3), a(0)=2, a(1)=3, a(2)=10.
a(n) = 3^n + Sum_{alpha=RootOf(-1+z^2)} alpha^(-n)/2.
a(n) = 2*A033113(n+1) - 3*A033113(n) - A033113(n-1). - R. J. Mathar, Nov 28 2011
From Bruno Berselli, Aug 27 2013: (Start)
a(n) = 3^n + (1 + (-1)^n)/2.
a(n) = Sum_{k=0..n} (-1)^k + 2^k*binomial(n,k). (End)
E.g.f.: exp(3*x) + cosh(x). - Elmo R. Oliveira, Mar 16 2025

Extensions

More terms from James Sellers, Jun 05 2000