A052931 Expansion of 1/(1 - 3*x^2 - x^3).
1, 0, 3, 1, 9, 6, 28, 27, 90, 109, 297, 417, 1000, 1548, 3417, 5644, 11799, 20349, 41041, 72846, 143472, 259579, 503262, 922209, 1769365, 3269889, 6230304, 11579032, 21960801, 40967400, 77461435, 144863001, 273351705, 512050438, 964918116, 1809503019
Offset: 0
Examples
From _Wolfdieter Lang_, Oct 02 2013: (Start) In the 9-gon (enneagon), powers of rho(9) = 2*cos(pi/9): rho(9)^5 = A(5)*1 + B(5)*rho(9) + C(5)*rho(9)^2, with A(5) = B(3) = a(2) = 3, B(5) = a(4) = 9 and C(5) = B(4) = a(3) = 1: rho(9)^5 = 3 + 9*rho(9) + rho(9)^2. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 917
- L. E. Jeffery, Unit-primitive matrices
- Index entries for linear recurrences with constant coefficients, signature (0,3,1).
Crossrefs
Cf. A214699.
Programs
-
GAP
a:=[1,0,3];; for n in [4..40] do a[n]:=3*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Oct 17 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-3*x^2-x^3) )); // G. C. Greubel, Oct 17 2019 -
Maple
spec := [S,{S=Sequence(Prod(Z,Union(Z,Z,Z,Prod(Z,Z))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); seq(coeff(series(1/(1-3*x^2-x^3), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 17 2019
-
Mathematica
CoefficientList[Series[1/(1-3x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{0,3,1},{1,0,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
-
PARI
x='x+O('x^40); Vec(1/(1-3*x^2-x^3)) \\ Altug Alkan, Feb 20 2018
-
Sage
def A052931_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(1/(1-3*x^2-x^3)).list() A052931_list(40) # G. C. Greubel, Oct 17 2019
Formula
G.f.: 1/(1-3*x^2-x^3).
a(n) = 3*a(n-2) + a(n-3), with a(0)=1, a(1)=0, a(2)=3.
a(n) = Sum_{alpha=RootOf(-1+3*z^2+z^3)} (1/9)*(-1 +5*alpha +2*alpha^2) * alpha^(-1-n).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)3^(3k-n). - Paul Barry, Oct 04 2004
a(n) = A187497(3*(n+1)). - L. Edson Jeffery, Mar 19 2011.
3*a(n) = abs(A214699(n+1)). - Roman Witula, Oct 06 2012
Extensions
More terms from James Sellers, Jun 06 2000
Comments