A052941 Expansion of (1-x)/(1 - 4*x + x^2 + x^3).
1, 3, 11, 40, 146, 533, 1946, 7105, 25941, 94713, 345806, 1262570, 4609761, 16830668, 61450341, 224360935, 819162731, 2990839648, 10919834926, 39869337325, 145566674726, 531477526653, 1940474094561, 7084852176865
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 932
- Index entries for linear recurrences with constant coefficients, signature (4,-1,-1).
Programs
-
GAP
a:=[1,3,11];; for n in [4..30] do a[n]:=4*a[n-1]-a[n-2]-a[n-3]; od; a; # G. C. Greubel, Oct 18 2019
-
Magma
I:=[1, 3, 11]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
-
Maple
spec:= [S,{S=Sequence(Union(Z,Z,Prod(Union(Sequence(Z),Z),Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); seq(coeff(series((1-x)/(1-4*x+x^2+x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 18 2019
-
Mathematica
LinearRecurrence[{4,-1,-1},{1,3,11},30] (* Vincenzo Librandi, Jun 22 2012 *)
-
PARI
my(x='x+O('x^30)); Vec((1-x)/(1-4*x+x^2+x^3)) \\ Altug Alkan, Sep 21 2018
-
Sage
def A052941_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1-x)/(1-4*x+x^2+x^3)).list() A052941_list(30) # G. C. Greubel, Oct 18 2019
Formula
Extensions
More terms from James Sellers, Jun 06 2000
Comments