cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052947 Expansion of 1/(1-x^2-2*x^3).

Original entry on oeis.org

1, 0, 1, 2, 1, 4, 5, 6, 13, 16, 25, 42, 57, 92, 141, 206, 325, 488, 737, 1138, 1713, 2612, 3989, 6038, 9213, 14016, 21289, 32442, 49321, 75020, 114205, 173662, 264245, 402072, 611569, 930562, 1415713, 2153700, 3276837, 4985126, 7584237, 11538800
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n into parts 1 of one kind and part 2 of two kinds. - Joerg Arndt, Oct 22 2019

Crossrefs

Column k=2 of A219946. - Alois P. Heinz, Dec 01 2012

Programs

  • GAP
    a:=[1,0,1];; for n in [4..50] do a[n]:=a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Oct 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x^2-2*x^3) )); // G. C. Greubel, Oct 21 2019
    
  • Maple
    spec:= [S,{S=Sequence(Prod(Union(Prod(Union(Z,Z),Z),Z),Z))}, unlabeled]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(coeff(series(1/(1-x^2-2*x^3), x, n+1), x, n), n = 0..50); # G. C. Greubel, Oct 21 2019
  • Mathematica
    LinearRecurrence[{0,1,2}, {1,0,1}, 50] (* G. C. Greubel, Oct 21 2019 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(1-x^2-2*x^3)) \\ G. C. Greubel, Oct 21 2019
    
  • Sage
    def A052947_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/(1-x^2-2*x^3)).list()
    A052947_list(50) # G. C. Greubel, Oct 21 2019
    

Formula

a(n) = a(n-2) + 2*a(n-3).
a(n) = Sum_{alpha=RootOf(-1+z^2+2*z^3)} (1/52)*(3 +17*alpha -2*alpha^2)*alpha^(-1-n).
a(n) = Sum_{k=0..floor(n/2)} C(k,n-2*k)*2^(n-2*k). - Paul Barry, Oct 16 2004
If p[1]=0, p[2]=1, p[3]=2, p[i]=0, (i>3), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det A. - Milan Janjic, May 02 2010

Extensions

More terms from James Sellers, Jun 05 2000