A128099
Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28
Offset: 0
Triangle starts:
1;
1;
1, 2;
1, 4;
1, 6, 4;
1, 8, 12;
1, 10, 24, 8;
1, 12, 40, 32;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Richard Fors, Independence Complexes of Certain Families of Graphs, Master's thesis in Mathematics at KTH, presented Aug 19 2011.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares arXiv:1609.03964 [math.CO] (2016).
- Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n
- Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n
- Eric Weisstein's World of Mathematics, Jacobsthal Polynomial
-
T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
-
Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten (* G. C. Greubel, Dec 28 2016 *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A159288
Expansion of (1 + x + x^2)/(1 - x^2 - 2*x^3).
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 10, 15, 24, 35, 54, 83, 124, 191, 290, 439, 672, 1019, 1550, 2363, 3588, 5463, 8314, 12639, 19240, 29267, 44518, 67747, 103052, 156783, 238546, 362887, 552112, 839979, 1277886, 1944203, 2957844, 4499975, 6846250, 10415663
Offset: 0
-
I:=[1, 1, 2]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
CoefficientList[Series[(1+x+x^2)/(1-x^2-2x^3),{x,0,50}],x] (* Harvey P. Dale, Mar 09 2011 *)
LinearRecurrence[{0, 1, 2}, {1, 1, 2}, 50] (* G. C. Greubel, Jun 27 2018 *)
-
a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;1;2])[1,1] \\ Charles R Greathouse IV, Aug 27 2016
-
Vec((1 + x + x^2) / (1 - x^2 - 2*x^3) + O(x^40)) \\ Colin Barker, Apr 29 2019
A183111
Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 9, 25, 75, 223, 665, 1993, 5971, 17903, 53697, 161065, 483163, 1449439, 4348233, 13044585, 39133571, 117400431, 352200881, 1056601993, 3169805003, 9509413535, 28528238329, 85584711561, 256754129459, 770262380399, 2310787129121, 6932361368937
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173; arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Web applet to play The Magnetic Tower of Hanoi
- Index entries for linear recurrences with constant coefficients, signature (3,1,-1,-6).
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi.
-
LinearRecurrence[{3,1,-1,-6},{0,1,3,9,25},30] (* Harvey P. Dale, Apr 30 2018 *)
A159284
Expansion of x*(1+x)/(1-x^2-2*x^3).
Original entry on oeis.org
0, 1, 1, 1, 3, 3, 5, 9, 11, 19, 29, 41, 67, 99, 149, 233, 347, 531, 813, 1225, 1875, 2851, 4325, 6601, 10027, 15251, 23229, 35305, 53731, 81763, 124341, 189225, 287867, 437907, 666317, 1013641, 1542131, 2346275, 3569413, 5430537
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Matthias Beck and Neville Robbins, Variations on a Generatingfunctional Theme: Enumerating Compositions with Parts Avoiding an Arithmetic Sequence, arXiv:1403.0665 [math.NT], 2014.
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- Yüksel Soykan, Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490 [math.GM], 2019.
- Index entries for linear recurrences with constant coefficients, signature (0,1,2).
-
I:=[0,1,1]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
CoefficientList[Series[x (1+x)/(1-x^2-2x^3),{x,0,50}],x] (* or *) LinearRecurrence[ {0,1,2},{0,1,1},50] (* Harvey P. Dale, Jul 16 2013 *)
-
a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[0;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
Deleted certain dangerous or potentially dangerous links. -
N. J. A. Sloane, Jan 30 2021
A219946
Number A(n,k) of tilings of a k X n rectangle using right trominoes and 2 X 2 tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 4, 4, 4, 4, 0, 1, 1, 0, 5, 0, 6, 0, 5, 0, 1, 1, 0, 6, 8, 16, 16, 8, 6, 0, 1, 1, 0, 13, 0, 37, 0, 37, 0, 13, 0, 1, 1, 0, 16, 16, 92, 136, 136, 92, 16, 16, 0, 1, 1, 0, 25, 0, 245, 0, 545, 0, 245, 0, 25, 0, 1
Offset: 0
A(4,4) = 6, because there are 6 tilings of a 4 X 4 rectangle using right trominoes and 2 X 2 tiles:
.___.___. .___.___. .___.___. .___.___. .___.___. .___.___.
| . | . | | ._|_. | | ._| . | | ._|_. | | ._|_. | | . |_. |
|___|___| |_| . |_| |_| |___| |_| ._|_| |_|_. |_| |___| |_|
| . | . | | |___| | | |___| | | |_| . | | . |_| | | |___| |
|___|___| |___|___| |___|___| |___|___| |___|___| |___|___|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 2, 1, 4, 5, 6, 13, 16, ...
1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...
1, 0, 1, 4, 6, 16, 37, 92, 245, 560, ...
1, 0, 4, 0, 16, 0, 136, 0, 1128, 384, ...
1, 0, 5, 8, 37, 136, 545, 2376, 10534, 46824, ...
1, 0, 6, 0, 92, 0, 2376, 5504, 71248, 253952, ...
1, 0, 13, 16, 245, 1128, 10534, 71248, 652036, 5141408, ...
1, 0, 16, 0, 560, 384, 46824, 253952, 5141408, 44013568, ...
Columns (or rows) k=0-10 give:
A000012,
A000007,
A052947,
A077957,
A165799,
A190759,
A219947,
A219948,
A219949,
A219950,
A219951.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od;
`if`(k>1 and l[k-1]=1, b(n, subsop(k=2, k-1=2, l)), 0)+
`if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, l_] := b[n, l] = Module[{k, t}, If[Max[l] > n , 0 , If [n == 0 || l == {},1 , If[Min[l] > 0, t = Min[l]; b[n-t, l-t], For[k = 1, k <= Length[l], k++, If[l[[k]] == 0 , Break[]]]; If[k > 1 && l[[k-1]] == 1, b[n, ReplacePart[l, {k -> 2, k-1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 1, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]] + b[n, ReplacePart[l, {k -> 1, k+1 -> 2}]] + b[n, ReplacePart[l, {k -> 2, k+1 -> 1}]], 0]+If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2, k+2 -> 2}]], 0]]]]]; a[n_, ] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover, Nov 26 2013, translated from Alois P. Heinz's Maple program *)
A110509
Riordan array (1, x(1-2x)).
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 0, -4, 1, 0, 0, 4, -6, 1, 0, 0, 0, 12, -8, 1, 0, 0, 0, -8, 24, -10, 1, 0, 0, 0, 0, -32, 40, -12, 1, 0, 0, 0, 0, 16, -80, 60, -14, 1, 0, 0, 0, 0, 0, 80, -160, 84, -16, 1, 0, 0, 0, 0, 0, -32, 240, -280, 112, -18, 1, 0, 0, 0, 0, 0, 0, -192, 560, -448, 144, -20, 1, 0, 0, 0, 0, 0, 0, 64, -672, 1120, -672, 180, -22, 1
Offset: 0
Rows begin
1;
0, 1;
0, -2, 1;
0, 0, -4, 1;
0, 0, 4, -6, 1;
0, 0, 0, 12, -8, 1;
0, 0, 0, -8, 24, -10, 1;
-
T[n_, k_] := (-2)^(n - k)*Binomial[k, n - k]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 29 2017 *)
-
for(n=0,25, for(k=0,n, print1((-2)^(n-k)*binomial(k, n-k), ", "))) \\ G. C. Greubel, Aug 29 2017
A159287
Expansion of x^2/(1-x^2-2*x^3).
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 1, 4, 5, 6, 13, 16, 25, 42, 57, 92, 141, 206, 325, 488, 737, 1138, 1713, 2612, 3989, 6038, 9213, 14016, 21289, 32442, 49321, 75020, 114205, 173662, 264245, 402072, 611569, 930562, 1415713, 2153700, 3276837, 4985126, 7584237, 11538800
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Creighton Dement, Online Floretion Multiplier.
- Yüksel Soykan, A Study on Generalized Jacobsthal-Padovan Numbers, Earthline Journal of Mathematical Sciences (2020) Vol. 4, No. 2, 227-251.
- Index entries for linear recurrences with constant coefficients, signature (0,1,2).
-
I:=[0,0,1]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
LinearRecurrence[{0, 1, 2}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, May 24 2011 *)
CoefficientList[Series[x^2/(1-x^2-2x^3),{x,0,50}],x] (* Harvey P. Dale, May 29 2021 *)
-
a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[0;0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A107849
Expansion of (1 + x)^2 / ((1 - x^2 - 2*x^3)*(1 + x^4)).
Original entry on oeis.org
1, 2, 2, 4, 5, 6, 12, 16, 25, 42, 58, 92, 141, 206, 324, 488, 737, 1138, 1714, 2612, 3989, 6038, 9212, 14016, 21289, 32442, 49322, 75020, 114205, 173662, 264244, 402072, 611569, 930562, 1415714, 2153700, 3276837, 4985126, 7584236, 11538800
Offset: 0
-
CoefficientList[Series[(1 + x)^2 / ((1 - x^2 - 2*x^3)*(1 + x^4)),{x,0,39}],x] (* James C. McMahon, Feb 19 2024 *)
-
Vec((1 + x)^2 / ((1 - x^2 - 2*x^3)*(1 + x^4)) + O(x^45)) \\ Colin Barker, Apr 30 2019
A107850
Expansion of g.f. (x^2+x+1)*(2*x^2+2*x+1)*(x-1)^2/((1-x^2-2*x^3)*(x^4+1)).
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 3, 6, 7, 13, 17, 24, 41, 57, 91, 142, 207, 325, 489, 736, 1137, 1713, 2611, 3990, 6039, 9213, 14017, 21288, 32441, 49321, 75019, 114206, 173663, 264245, 402073, 611568, 930561, 1415713, 2153699, 3276838, 4985127, 7584237, 11538801
Offset: 0
-
CoefficientList[Series[(x^2+x+1)(2x^2+2x+1)(x-1)^2/((1-x^2-2x^3)(x^4+1)),{x,0,50}],x] (* or *) LinearRecurrence[{0,1,2,-1,0,1,2},{1,1,1,0,1,1,3},50] (* Harvey P. Dale, Dec 26 2015 *)
A159285
Expansion of (1+3*x)/(1-x^2-2*x^3).
Original entry on oeis.org
1, 3, 1, 5, 7, 7, 17, 21, 31, 55, 73, 117, 183, 263, 417, 629, 943, 1463, 2201, 3349, 5127, 7751, 11825, 18005, 27327, 41655, 63337, 96309, 146647, 222983, 339265, 516277, 785231, 1194807, 1817785, 2765269, 4207399, 6400839, 9737937, 14815637
Offset: 0
-
I:=[1,3,1]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
LinearRecurrence[{0, 1, 2}, {1, 3, 1}, 50] (* G. C. Greubel, Jun 27 2018 *)
CoefficientList[Series[(1+3x)/(1-x^2-2x^3),{x,0,40}],x] (* Harvey P. Dale, Jan 21 2019 *)
-
a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;3;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
Showing 1-10 of 20 results.
Comments